Mercurial > hg > octave-image
view inst/imrotate.m @ 435:8b58472d87e8
Allow non-double images when using Fourier rotations
author | hauberg |
---|---|
date | Mon, 18 Oct 2010 10:49:30 +0000 |
parents | fb0304c26aa9 |
children | d3de48ecb728 |
line wrap: on
line source
## Copyright (C) 2004-2005 Justus H. Piater ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 2 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} imrotate(@var{imgPre}, @var{theta}, @var{method}, @var{bbox}, @var{extrapval}) ## Rotation of a 2D matrix about its center. ## ## Input parameters: ## ## @var{imgPre} a gray-level image matrix ## ## @var{theta} the rotation angle in degrees counterclockwise ## ## @var{method} ## @itemize @w ## @item "nearest" neighbor: fast, but produces aliasing effects (default). ## @item "bilinear" interpolation: does anti-aliasing, but is slightly slower. ## @item "bicubic" interpolation: does anti-aliasing, preserves edges better than bilinear interpolation, but gray levels may slightly overshoot at sharp edges. This is probably the best method for most purposes, but also the slowest. ## @item "Fourier" uses Fourier interpolation, decomposing the rotation matrix into 3 shears. This method often results in different artifacts than homography-based methods. Instead of slightly blurry edges, this method can result in ringing artifacts (little waves near high-contrast edges). However, Fourier interpolation is better at maintaining the image information, so that unrotating will result in an image closer to the original than the other methods. ## @end itemize ## ## @var{bbox} ## @itemize @w ## @item "loose" grows the image to accommodate the rotated image (default). ## @item "crop" rotates the image about its center, clipping any part of the image that is moved outside its boundaries. ## @end itemize ## ## @var{extrapval} sets the value used for extrapolation. The default value ## is @code{NA} for images represented using doubles, and 0 otherwise. ## This argument is ignored of Fourier interpolation is used. ## ## Output parameters: ## ## @var{imgPost} the rotated image matrix ## ## @var{H} the homography mapping original to rotated pixel ## coordinates. To map a coordinate vector c = [x;y] to its ## rotated location, compute round((@var{H} * [c; 1])(1:2)). ## ## @var{valid} a binary matrix describing which pixels are valid, ## and which pixels are extrapolated. This output is ## not available if Fourier interpolation is used. ## @end deftypefn ## Author: Justus H. Piater <Justus.Piater@ULg.ac.be> ## Created: 2004-10-18 ## Version: 0.7 function [imgPost, H, valid] = imrotate(imgPre, thetaDeg, interp="nearest", bbox="loose", extrapval=NA) ## Check input if (nargin < 2) error("imrotate: not enough input arguments"); endif [imrows, imcols, imchannels, tmp] = size(imgPre); if (tmp != 1 || (imchannels != 1 && imchannels != 3)) error("imrotate: first input argument must be an image"); endif if (!isscalar(thetaDeg)) error("imrotate: the angle must be given as a scalar"); endif if (!any(strcmpi(interp, {"nearest", "linear", "bilinear", "cubic", "bicubic", "Fourier"}))) error("imrotate: unsupported interpolation method"); endif if (any(strcmpi(interp, {"bilinear", "bicubic"}))) interp = interp(3:end); # Remove "bi" endif if (!any(strcmpi(bbox, {"loose", "crop"}))) error("imrotate: bounding box must be either 'loose' or 'crop'"); endif if (!isscalar(extrapval)) error("imrotate: extrapolation value must be a scalar"); endif ## Input checking done. Start working thetaDeg = mod(thetaDeg, 360); # some code below relies on positive angles theta = thetaDeg * pi/180; sizePre = size(imgPre); ## We think in x,y coordinates here (rather than row,column), except ## for size... variables that follow the usual size() convention. The ## coordinate system is aligned with the pixel centers. R = [cos(theta) sin(theta); -sin(theta) cos(theta)]; if (nargin >= 4 && strcmp(bbox, "crop")) sizePost = sizePre; else ## Compute new size by projecting zero-base image corner pixel ## coordinates through the rotation: corners = [0, 0; (R * [sizePre(2) - 1; 0 ])'; (R * [sizePre(2) - 1; sizePre(1) - 1])'; (R * [0 ; sizePre(1) - 1])' ]; sizePost(2) = round(max(corners(:,1)) - min(corners(:,1))) + 1; sizePost(1) = round(max(corners(:,2)) - min(corners(:,2))) + 1; ## This size computation yields perfect results for 0-degree (mod ## 90) rotations and, together with the computation of the center of ## rotation below, yields an image whose corresponding region is ## identical to "crop". However, we may lose a boundary of a ## fractional pixel for general angles. endif ## Compute the center of rotation and the translational part of the ## homography: oPre = ([ sizePre(2); sizePre(1)] + 1) / 2; oPost = ([sizePost(2); sizePost(1)] + 1) / 2; T = oPost - R * oPre; # translation part of the homography ## And here is the homography mapping old to new coordinates: H = [[R; 0 0] [T; 1]]; ## Treat trivial rotations specially (multiples of 90 degrees): if (mod(thetaDeg, 90) == 0) nRot90 = mod(thetaDeg, 360) / 90; if (mod(thetaDeg, 180) == 0 || sizePre(1) == sizePre(2) || strcmpi(bbox, "loose")) imgPost = rot90(imgPre, nRot90); return; elseif (mod(sizePre(1), 2) == mod(sizePre(2), 2)) ## Here, bbox is "crop" and the rotation angle is +/- 90 degrees. ## This works only if the image dimensions are of equal parity. imgRot = rot90(imgPre, nRot90); imgPost = zeros(sizePre); hw = min(sizePre) / 2 - 0.5; imgPost (round(oPost(2) - hw) : round(oPost(2) + hw), round(oPost(1) - hw) : round(oPost(1) + hw) ) = ... imgRot(round(oPost(1) - hw) : round(oPost(1) + hw), round(oPost(2) - hw) : round(oPost(2) + hw) ); return; else ## Here, bbox is "crop", the rotation angle is +/- 90 degrees, and ## the image dimensions are of unequal parity. This case cannot ## correctly be handled by rot90() because the image square to be ## cropped does not align with the pixels - we must interpolate. A ## caller who wants to avoid this should ensure that the image ## dimensions are of equal parity. endif end ## Now the actual rotations happen if (strcmpi(interp, "Fourier")) c = class (imgPre); imgPre = im2double (imgPre); if (isgray(imgPre)) imgPost = imrotate_Fourier(imgPre, thetaDeg, interp, bbox); else # rgb image for i = 3:-1:1 imgPost(:,:,i) = imrotate_Fourier(imgPre(:,:,i), thetaDeg, interp, bbox); endfor endif valid = NA; switch (c) case "uint8" imgPost = im2uint8 (imgPost); case "uint16" imgPost = im2uint16 (imgPost); case "single" imgPost = single (imgPost); endswitch else [imgPost, valid] = imperspectivewarp(imgPre, H, interp, bbox, extrapval); endif endfunction %!test %! ## Verify minimal loss across six rotations that add up to 360 +/- 1 deg.: %! methods = { "nearest", "bilinear", "bicubic", "Fourier" }; %! angles = [ 59 60 61 ]; %! tolerances = [ 7.4 8.5 8.6 # nearest %! 3.5 3.1 3.5 # bilinear %! 2.7 2.0 2.7 # bicubic %! 2.7 1.6 2.8 ]/8; # Fourier %! %! # This is peaks(50) without the dependency on the plot package %! x = y = linspace(-3,3,50); %! [X,Y] = meshgrid(x,y); %! x = 3*(1-X).^2.*exp(-X.^2 - (Y+1).^2) \ %! - 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) \ %! - 1/3*exp(-(X+1).^2 - Y.^2); %! %! x -= min(x(:)); # Fourier does not handle neg. values well %! x = x./max(x(:)); %! for m = 1:(length(methods)) %! y = x; %! for i = 1:5 %! y = imrotate(y, 60, methods{m}, "crop", 0); %! end %! for a = 1:(length(angles)) %! assert(norm((x - imrotate(y, angles(a), methods{m}, "crop", 0)) %! (10:40, 10:40)) < tolerances(m,a)); %! end %! end %!#test %! ## Verify exactness of near-90 and 90-degree rotations: %! X = rand(99); %! for angle = [90 180 270] %! for da = [-0.1 0.1] %! Y = imrotate(X, angle + da , "nearest", :, 0); %! Z = imrotate(Y, -(angle + da), "nearest", :, 0); %! assert(norm(X - Z) == 0); # exact zero-sum rotation %! assert(norm(Y - imrotate(X, angle, "nearest", :, 0)) == 0); # near zero-sum %! end %! end %!#test %! ## Verify preserved pixel density: %! methods = { "nearest", "bilinear", "bicubic", "Fourier" }; %! ## This test does not seem to do justice to the Fourier method...: %! tolerances = [ 4 2.2 2.0 209 ]; %! range = 3:9:100; %! for m = 1:(length(methods)) %! t = []; %! for n = range %! t(end + 1) = sum(imrotate(eye(n), 20, methods{m}, :, 0)(:)); %! end %! assert(t, range, tolerances(m)); %! end