Mercurial > hg > octave-image
view src/__bwdist.cc @ 218:69bb85145ef5
First revision of bwarea.m and __bwarea.cc
author | hauberg |
---|---|
date | Thu, 28 Dec 2006 22:42:12 +0000 |
parents | |
children | 8fe38c1c25c5 |
line wrap: on
line source
/* Copyright (C) 2006 Pedro Felzenszwalb This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Remark by Søren Hauberg, december 28th 2006. * * This code was mainly written by Pedro Felzenszwalb and published * on http://people.cs.uchicago.edu/~pff/dt/ * Pedro kindly released his code under the GPL and I ported it to * Octave. */ #include <octave/oct.h> #define INF 1E20 template <class T> inline T square(const T &x) { return x*x; }; /* dt of 1d function using squared distance */ static float *dt(float *f, int n) { float *d = new float[n]; int *v = new int[n]; float *z = new float[n+1]; int k = 0; v[0] = 0; z[0] = -INF; z[1] = +INF; for (int q = 1; q <= n-1; q++) { float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]); while (s <= z[k]) { k--; s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]); } k++; v[k] = q; z[k] = s; z[k+1] = +INF; } k = 0; for (int q = 0; q <= n-1; q++) { while (z[k+1] < q) k++; d[q] = square(q-v[k]) + f[v[k]]; } delete [] v; delete [] z; return d; } /* dt of 2d function using squared distance */ static void dt(NDArray &im) { const int width = im.dim2(); const int height = im.dim1(); float *f = new float[std::max(width,height)]; // transform along columns for (int x = 0; x < width; x++) { for (int y = 0; y < height; y++) { f[y] = im(x, y); } float *d = dt(f, height); for (int y = 0; y < height; y++) { im(x, y) = d[y]; } delete [] d; } // transform along rows for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { f[x] = im(x, y); } float *d = dt(f, width); for (int x = 0; x < width; x++) { im(x, y) = d[x]; } delete [] d; } delete f; } /* dt of binary image using squared distance */ void dt(boolNDArray &im, NDArray &out) { const int width = im.dim2(); const int height = im.dim1(); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { if (im(x, y)) out(x, y) = 0; else out(x, y) = INF; } } dt(out); } DEFUN_DLD(__bwdist, args, nargout, "\ -*- texinfo -*-\n\ @deftypefn {Function File} __bwdist (@var{bw})\n\ Computes the Euclidian Distance Transform for a binary image @var{bw}.\n\ You should not call this function directly, instead call 'bwdist'.\n\ @seealso{bwdist}\n\ @end deftypefn\n\ ") { octave_value_list retval; boolNDArray bw = args(0).bool_array_value(); if (error_state) { error("__bwdist: input must be a boolean matrix"); return retval; } const dim_vector dims = bw.dims(); if (dims.length() != 2) { error("__bwdist: currently only binary images are supported"); return retval; } NDArray *out = new NDArray(dims); dt(bw, *out); retval.append(*out); return retval; }