Mercurial > hg > octave-image
view houghtf.cc @ 129:2ae5df7fb275
Updated tests to match Gonzalez&Woods example
author | jmones |
---|---|
date | Wed, 15 Sep 2004 20:00:00 +0000 |
parents | 571db4b478f2 |
children | 964e1e1e54b5 |
line wrap: on
line source
/* Copyright (C) 2004 Stefan van der Walt <stefan@sun.ac.za> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <octave/oct.h> DEFUN_DLD( houghtf, args, , "\ \ usage: [H, R] = houghtf(I[, angles])\n\ \n\ Calculate the straight line Hough transform of an image.\n\ \n\ The image, I, should be a binary image in [0,1]. The angles are given\n\ in degrees and defaults to -90..90.\n\ \n\ H is the resulting transform, R the radial distances.\n\ \n\ See also: Digital Image Processing by Gonzales & Woods (2nd ed., p. 587)\n") { octave_value_list retval; bool DEF_THETA = false; if (args.length() == 1) { DEF_THETA = true; } else if (args.length() != 2) { print_usage("houghtf"); return retval; } Matrix I = args(0).matrix_value(); ColumnVector thetas = ColumnVector(); if (!DEF_THETA) { thetas = ColumnVector(args(1).vector_value()); } else { thetas = ColumnVector(Range(-90,90).matrix_value()); } if (error_state) { print_usage("houghtf"); return retval; } thetas = thetas / 180 * M_PI; int r = I.rows(); int c = I.columns(); Matrix xMesh = Matrix(r, c); Matrix yMesh = Matrix(r, c); for (int m = 0; m < r; m++) { for (int n = 0; n < c; n++) { xMesh(m, n) = n+1; yMesh(m, n) = m+1; } } Matrix size = Matrix(1, 2); size(0) = r; size(1) = c; double diag_length = sqrt( size.sumsq()(0) ); int nr_bins = 2 * (int)ceil(diag_length) - 1; RowVector bins = RowVector( Range(1, nr_bins).matrix_value() ) - ceil(nr_bins/2.); Matrix J = Matrix(bins.length(), 0); for (int i = 0; i < thetas.length(); i++) { double theta = thetas(i); ColumnVector rho_count = ColumnVector(bins.length(), 0); double cT = cos(theta); double sT = sin(theta); for (int x = 0; x < r; x++) { for (int y = 0; y < c; y++) { if ( I(y, x) == 1 ) { int rho = (int)floor( cT*x + sT*y + 0.5 ); int bin = (int)(rho - bins(0)); if ( (bin > 0) && (bin < bins.length()) ) { rho_count( bin )++; } } } } J = J.append( rho_count ); } retval.append(J); retval.append(bins); return retval; } /* %!test %! I = zeros(100, 100); %! I(1,1) = 1; I(100,100) = 1; I(1,100) = 1; I(100, 1) = 1; I(50,50) = 1; %! [J, R] = houghtf(I); J = J / max(J(:)); %! assert(size(J) == [length(R) 181]); %! %!demo %! I = zeros(100, 150); %! I(30,:) = 1; I(:, 65) = 1; I(35:45, 35:50) = 1; %! for i = 1:90, I(i,i) = 1;endfor %! I = imnoise(I, 'salt & pepper'); %! imshow(I); %! J = houghtf(I); J = J / max(J(:)); %! imshow(J, bone(128), 'truesize'); */