Mercurial > hg > octave-avbm
view liboctave/ArrayN-idx.h @ 4504:f6a61399bc5c
[project @ 2003-09-09 17:48:00 by jwe]
author | jwe |
---|---|
date | Tue, 09 Sep 2003 17:49:13 +0000 |
parents | 124c137af3db |
children | e944fbe3fff2 |
line wrap: on
line source
// Template array classes /* Copyright (C) 2000 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "Array-flags.h" #include "idx-vector.h" #include "lo-error.h" template <class T> void ArrayN<T>::maybe_delete_elements (Array<idx_vector>& idx, const T& rfv) { int n_idx = idx.length (); Array<int> lhs_dims = dims (); Array<int> idx_is_colon (n_idx, 0); Array<int> idx_is_colon_equiv (n_idx, 0); // Initialization of colon arrays. for (int i = 0; i < n_idx; i++) { idx_is_colon_equiv(i) = idx(i).is_colon_equiv (lhs_dims(i), 1); idx_is_colon(i) = idx(i).is_colon (); } if (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv)) { // A(:,:,:) -- we are deleting elements in all dimensions, so // the result is [](0x0x0). Array<int> zeros (n_idx, 0); resize (zeros, rfv); } else if (num_ones (idx_is_colon) == n_idx - 1 && num_ones (idx_is_colon_equiv) == n_idx) { // A(:,:,j) -- we are deleting elements in one dimension by // enumerating them. // // If we enumerate all of the elements, we should have zero // elements in that dimension with the same number of elements // in the other dimensions that we started with. Array<int> temp_dims (n_idx,0); for (int i = 0; i < n_idx; i++) { if (idx_is_colon (i)) temp_dims (i) = lhs_dims (i); else temp_dims (i) = 0; } resize (temp_dims); } else if (num_ones (idx_is_colon) == n_idx - 1) { // We have colons in all indices except for one. // This index tells us which slice to delete int non_col = 0; // Find the non-colon column. for (int i = 0; i < n_idx; i++) { if (! idx_is_colon (i)) non_col = i; } // The length of the non-colon dimension. int non_col_dim = lhs_dims (non_col); idx(non_col).sort (true); int num_to_delete = idx(non_col).length (lhs_dims (non_col)); if (num_to_delete > 0) { int temp = num_ones(lhs_dims); if (non_col_dim == 1) temp--; if (temp == n_idx - 1 && num_to_delete == non_col_dim) { // We have A with (1x1x4), where A(1,:,1:4) // Delete all (0x0x0) Array<int> zero_dims (n_idx, 0); resize (zero_dims, rfv); } else { // New length of non-colon dimension // (calculated in the next for loop) int new_dim = non_col_dim; int iidx = 0; for (int j = 0; j < non_col_dim; j++) if (j == idx(non_col).elem (iidx)) { iidx++; new_dim--; if (iidx == num_to_delete) break; } // Creating the new nd array after deletions. if (new_dim > 0) { // Calculate number of elements in new array. int num_new_elem=1; for (int i = 0; i < n_idx; i++) { if (i == non_col) num_new_elem *= new_dim; else num_new_elem *= lhs_dims(i); } T *new_data = new T [num_new_elem]; Array<int> result_idx (lhs_dims.length (), 0); Array<int> elt_idx; Array<int> lhs_inc (lhs_dims.length ()); for (int i = 0; i < lhs_dims.length (); i++) lhs_inc(i) = lhs_dims(i) + 1; Array<int> new_lhs_dim = lhs_dims; new_lhs_dim(non_col) = new_dim; int num_elem = 1; int numidx = 0; int n = length (); for (int i =0; i < lhs_dims.length (); i++) if (i != non_col) num_elem *= lhs_dims (i); num_elem *= idx(non_col).capacity (); for (int i = 0; i < n; i++) { if (numidx < num_elem && is_in (result_idx(non_col), idx(non_col))) numidx++; else { Array<int> temp_result_idx = result_idx; int num_lgt = how_many_lgt (result_idx(non_col), idx(non_col)); temp_result_idx(non_col) -= num_lgt; int kidx = ::compute_index (temp_result_idx, new_lhs_dim); new_data[kidx] = elem (result_idx); } increment_index (result_idx, lhs_dims); } if (--(Array<T>::rep)->count <= 0) delete Array<T>::rep; Array<T>::rep = new typename Array<T>::ArrayRep (new_data, num_new_elem); dimensions = new_lhs_dim; set_max_indices (new_lhs_dim.length ()); } } } } else if (num_ones(idx_is_colon) < n_idx) { (*current_liboctave_error_handler) ("A null assignment can have only one non-colon index."); } } template <class T> ArrayN<T> ArrayN<T>::value (void) { ArrayN<T> retval; int n_idx = index_count (); if (n_idx > 1) { Array<idx_vector> ra_idx (n_idx); idx_vector *tmp = get_idx (); for (int i = 0; i < n_idx; i++) ra_idx(i) = tmp[i]; return index (ra_idx); } else if (n_idx == 1) { idx_vector *tmp = get_idx (); idx_vector ra_idx = tmp[0]; return index (ra_idx); } else (*current_liboctave_error_handler) ("invalid number of indices for array expression"); clear_index (); return retval; } template <class T> ArrayN<T> ArrayN<T>::index (idx_vector& ra_idx, int resize_ok, const T& rfv) const { ArrayN<T> retval; assert (0); return retval; } static inline Array<int> freeze (Array<idx_vector>& ra_idx, const Array<int>& dimensions, int resize_ok) { Array<int> retval; int n = ra_idx.length (); assert (n == dimensions.length ()); retval.resize (n); for (int i = 0; i < n; i++) retval(i) = ra_idx(i).freeze (dimensions(i), "XXX FIXME XXX", resize_ok); return retval; } static inline bool vector_equivalent (const Array<int>& ra_idx) { int n = ra_idx.length (); bool found_first = false; for (int i = 0; i < n; i++) { if (ra_idx(i) != 1) { if (! found_first) found_first = true; else return false; } } return true; } static inline bool equal_arrays (const Array<int> a, const Array<int> b) { bool retval = true; if (a.length () != b.length ()) retval = false; else { for (int i = 0; i < a.length (); i++) { if (a(i) != b(i)) retval = false; } } return retval; } static inline bool all_ok (const Array<idx_vector>& ra_idx) { bool retval = true; int n = ra_idx.length (); for (int i = 0; i < n; i++) { if (! ra_idx(i)) { retval = false; break; } } return retval; } static inline bool any_orig_empty (const Array<idx_vector>& ra_idx) { bool retval = false; int n = ra_idx.length (); for (int i = 0; i < n; i++) { if (ra_idx(i).orig_empty ()) { retval = true; break; } } return retval; } static inline bool any_zero_len (const Array<int>& frozen_lengths) { bool retval = false; int n = frozen_lengths.length (); for (int i = 0; i < n; i++) { if (frozen_lengths(i) == 0) { retval = true; break; } } return retval; } static inline Array<int> get_zero_len_size (const Array<int>& frozen_lengths, const Array<int>& dimensions) { Array<int> retval; assert (0); return retval; } static inline bool all_colon_equiv (const Array<idx_vector>& ra_idx, const Array<int>& frozen_lengths) { bool retval = true; int idx_n = ra_idx.length (); int n = frozen_lengths.length (); assert (idx_n == n); for (int i = 0; i < n; i++) { if (! ra_idx(i).is_colon_equiv (frozen_lengths(i))) { retval = false; break; } } return retval; } static inline bool is_in (int num, const idx_vector& idx) { int n = idx.capacity (); for (int i = 0; i < n; i++) if (idx.elem (i) == num) return true; return false; } static inline int how_many_lgt (const int num, idx_vector& idxv) { int retval = 0; int n = idxv.capacity (); for (int i = 0; i < n; i++) if (num > idxv.elem (i)) retval++; return retval; } static inline bool all_ones (const Array<int> arr) { bool retval = true; for (int i = 0; i < arr.length (); i++) { if (arr(i) != 1) { retval = false; break; } } return retval; } static Array<int> get_elt_idx (const Array<idx_vector>& ra_idx, const Array<int>& result_idx) { int n = ra_idx.length (); Array<int> retval (n); for (int i = 0; i < n; i++) retval(i) = ra_idx(i).elem (result_idx(i)); return retval; } template <class T> ArrayN<T> ArrayN<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const { ArrayN<T> retval; int n_dims = dimensions.length (); Array<int> frozen_lengths = freeze (ra_idx, dimensions, resize_ok); if (frozen_lengths.length () == n_dims) { if (all_ok (ra_idx)) { if (any_orig_empty (ra_idx)) { retval.resize (frozen_lengths); } else if (any_zero_len (frozen_lengths)) { Array<int> new_size = get_zero_len_size (frozen_lengths, dimensions); retval.resize (new_size); } else if (all_colon_equiv (ra_idx, frozen_lengths)) { retval = *this; } else { #if 0 retval.resize (frozen_lengths); int n = Array<T>::get_size (frozen_lengths); Array<int> result_idx (n_dims, 0); for (int i = 0; i < n; i++) { Array<int> elt_idx = get_elt_idx (result_idx); if (elt_idx > orig_len) retval.elem (result_idx) = rfv; else retval.elem (result_idx) = elem (elt_idx); increment_index (result_idx, frozen_lengths); } #endif } } // idx_vector::freeze() printed an error message for us. } else (*current_liboctave_error_handler) ("invalid number of dimensions for N-dimensional array index"); return retval; } #define MAYBE_RESIZE_ND_DIMS \ do \ { \ if (n_idx >= lhs_dims.length () && ! rhs_is_empty) \ { \ Array<int> max_idx (n_idx); \ Array<int> new_idx (n_idx); \ \ for (int i = 0; i < n_idx; i++) \ { \ if (lhs_dims.length () == 0 || i >= lhs_dims.length ()) \ new_idx(i) = idx(i).max () + 1; \ else \ { \ if (i < rhs_dims.length ()) \ max_idx(i) = idx(i).is_colon () ? rhs_dims(i) : idx(i).max () + 1; \ else \ max_idx(i) = idx(i).max () + 1; \ \ new_idx(i) = max_idx(i) > lhs_dims(i) ? max_idx(i) : lhs_dims(i); \ } \ } \ \ lhs.resize (new_idx, rfv); \ lhs_dims = lhs.dims (); \ } \ } \ while (0) template <class LT, class RT> int assign (ArrayN<LT>& lhs, const ArrayN<RT>& rhs, const LT& rfv) { int retval = 1; int n_idx = lhs.index_count (); Array<int> lhs_dims = lhs.dims (); Array<int> rhs_dims = rhs.dims (); idx_vector *tmp = lhs.get_idx (); Array<idx_vector> idx = conv_to_array (tmp, n_idx); // This needs to be defined before MAYBE_RESIZE_ND_DIMS. bool rhs_is_empty = rhs_dims.length () == 0 ? true : any_zero_len (rhs_dims); // Maybe expand to more dimensions. MAYBE_RESIZE_ND_DIMS; Array<int> idx_is_colon (n_idx, 0); Array<int> idx_is_colon_equiv (n_idx, 0); for (int i = 0; i < n_idx; i++) { idx_is_colon_equiv(i) = idx(i).is_colon_equiv (lhs_dims(i), 1); idx_is_colon(i) = idx(i).is_colon (); } int resize_ok = 1; Array<int> frozen_len; if (n_idx == lhs_dims.length ()) frozen_len = freeze (idx, lhs_dims, resize_ok); bool rhs_is_scalar = is_scalar (rhs_dims); bool idx_is_empty = any_zero_len (frozen_len); if (rhs_is_empty) { lhs.maybe_delete_elements (idx, rfv); } else if (rhs_is_scalar) { if (n_idx == 0) (*current_liboctave_error_handler) ("number of indices is zero."); else if (n_idx < lhs_dims.length ()) { // Number of indices is less than dimensions. if (any_ones (idx_is_colon)|| any_ones (idx_is_colon_equiv)) { (*current_liboctave_error_handler) ("number of indices is less than number of dimensions, one or more indices are colons."); } else { // Fewer indices than dimensions, no colons. bool resize = false; // Subtract one since the last idx do not tell us // anything about dimensionality. for (int i = 0; i < idx.length () - 1; i++) { // Subtract one since idx counts from 0 while dims // count from 1. if (idx(i).elem (0) + 1 > lhs_dims(i)) resize = true; } if (resize) { Array<int> new_dims (lhs_dims.length ()); for (int i = 0; i < lhs_dims.length (); i++) { if (i < idx.length () - 1 && idx(i).elem (0) + 1 > lhs_dims(i)) new_dims(i) = idx(i).elem (0)+1; else new_dims(i) = lhs_dims(i); } lhs.resize (new_dims, rfv); lhs_dims = lhs.dims (); } Array<int> one_arg_temp (1, 0); RT scalar = rhs.elem (one_arg_temp); Array<int> int_arr = conv_to_int_array (idx); int numelem = get_scalar_idx (int_arr, lhs_dims); if (numelem > lhs.length () || numelem < 0) (*current_liboctave_error_handler) ("attempt to grow array along ambiguous dimension."); else lhs.Array<LT>::checkelem (numelem) = scalar; } } else { // Scalar to matrix assignment with as many indices as lhs // dimensions. int n = ArrayN<LT>::get_size (frozen_len); Array<int> result_idx (lhs_dims.length (), 0); Array<int> elt_idx; Array<int> one_arg_temp(1,0); RT scalar = rhs.elem (one_arg_temp); for (int i = 0; i < n; i++) { elt_idx = get_elt_idx (idx, result_idx); Array<int> lhs_inc(lhs_dims.length()); for (int i = 0; i < lhs_dims.length (); i++) lhs_inc(i) = lhs_dims(i) + 1; if (index_in_bounds(elt_idx, lhs_inc)) lhs.checkelem (elt_idx) = scalar; else lhs.checkelem (elt_idx) = rfv; increment_index (result_idx, frozen_len); } } } else if (rhs_dims.length () >= 2) { // RHS is matrix or higher dimension. // Subtracting number of dimensions of length 1 will catch // cases where: A(2,1,2)=3 A(:,1,:)=[2,3;4,5] if (rhs_dims.length () != num_ones(idx_is_colon_equiv) - num_ones(lhs_dims)) { (*current_liboctave_error_handler) ("dimensions do not match in matrix assignment."); } else { bool dim_ok(true); int jj = 0; // Check that RHS dimensions are the same length as the // corresponding LHS dimensions. for (int j = 0; j < idx_is_colon.length (); j++) { if (idx_is_colon(j) || idx_is_colon_equiv(j)) { if (rhs_dims(jj) < lhs_dims(j)) { dim_ok = false; break; } jj++; } } if (! dim_ok) (*current_liboctave_error_handler) ("subscripted assignment dimension mismatch."); else { Array<int> new_dims (n_idx); bool resize = false; int ii = 0; // Update idx vectors. for (int i = 0; i < n_idx; i++) { if (idx(i).is_colon ()) { // Add appropriate idx_vector to idx(i) since // index with : contains no indexes. frozen_len(i) = lhs_dims(i) > rhs_dims(ii) ? lhs_dims(i) : rhs_dims(ii); new_dims(i) = lhs_dims(i) > rhs_dims(ii) ? lhs_dims(i) : rhs_dims(ii); ii++; Range idxrange (1, frozen_len(i), 1); idx_vector idxv (idxrange); idx(i) = idxv; } else { new_dims(i) = lhs_dims(i) > idx(i).max () + 1 ? lhs_dims(i) : idx(i).max () + 1; if (frozen_len(i) > 1) ii++; } if (new_dims(i) != lhs_dims(i)) resize = true; } // Resize LHS if dimensions have changed. if (resize) { lhs.resize (new_dims, rfv); lhs_dims = lhs.dims (); } // Number of elements which need to be set. int n = ArrayN<LT>::get_size (frozen_len); Array<int> result_idx (lhs_dims.length (), 0); Array<int> elt_idx; Array<int> result_rhs_idx (rhs_dims.length (), 0); Array<int> frozen_rhs (rhs_dims.length(), 0); for (int i = 0; i < rhs_dims.length (); i++) frozen_rhs(i) = rhs_dims(i); Array<int> lhs_inc (lhs_dims.length ()); for (int i = 0; i < lhs_dims.length (); i++) lhs_inc(i) = lhs_dims(i) + 1; for (int i = 0; i < n; i++) { elt_idx = get_elt_idx (idx, result_idx); if (index_in_bounds (elt_idx, lhs_inc)) { int s = compute_index (result_rhs_idx,rhs_dims); lhs.checkelem (elt_idx) = rhs.Array<RT>::elem (s); increment_index (result_rhs_idx, frozen_rhs); } else lhs.checkelem (elt_idx) = rfv; increment_index (result_idx, frozen_len); } } } } else if (idx_is_empty) { // Assignment to matrix with at least one empty index. if (! rhs_is_empty || ! rhs_is_scalar) { (*current_liboctave_error_handler) ("A([], []) = X: X must be an empty matrix or a scalar"); retval = 0; } } else if (lhs_dims.length () != rhs_dims.length ()) { (*current_liboctave_error_handler) ("A(I) = X: X must be a scalar or a matrix with the same size as I"); retval = 0; } return retval; } static inline int get_scalar_idx (Array<int>& idx, Array<int>& dims) { int retval (-1); int n = idx.length (); if (n > 0) { retval = idx(--n); while (--n >= 0) { retval *= dims (n); retval += idx(n); } } return retval; } static inline int num_ones (const Array<int> ra_idx) { int retval (0); for (int i = 0; i < ra_idx.length (); i++) { if (ra_idx (i) == 1) retval++; } return retval; } static inline bool is_scalar (const Array<int>& dim) { bool retval = true; int n = dim.length (); if (n == 0) { retval = false; } else { for (int i = 0; i < n; i ++) { if (dim (i) != 1) { retval = false; break; } } } return retval; } static inline bool any_ones (const Array<int> arr) { bool retval = false; for (int i = 0; i < arr.length (); i++) { if (arr (i) == 1) { retval = true; break; } } return retval; } static inline int compute_index (const Array<int>& ra_idx, const Array<int>& dims) { int retval = -1; int n = dims.length (); if (n > 0 && n == ra_idx.length ()) { retval = ra_idx(--n); while (--n >= 0) { retval *= dims(n); retval += ra_idx(n); } } else (*current_liboctave_error_handler) ("ArrayN<T>::compute_index: invalid ra_idxing operation"); return retval; } static inline Array<int> conv_to_int_array (const Array<idx_vector>& a) { Array<int> retval (a.length ()); for (int i = 0; i < a.length (); i++) retval (i) = a(i).elem (0); return retval; } static inline Array<idx_vector> conv_to_array (const idx_vector *tmp, const int len) { Array<idx_vector> retval (len); for (int i = 0; i < len; i++) retval (i) = tmp[i]; return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */