Mercurial > hg > octave-avbm
view liboctave/DASRT.cc @ 3995:ee0304212be0
[project @ 2002-07-17 04:32:42 by jwe]
author | jwe |
---|---|
date | Wed, 17 Jul 2002 04:32:42 +0000 |
parents | a41827ec5677 |
children | 98107d72871c |
line wrap: on
line source
/* Copyright (C) 2002 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if defined (__GNUG__) #pragma implementation #endif #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream.h> #include <fstream.h> #include <cstdlib> #include <cfloat> #include <cmath> #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "ov-fcn.h" #include "pager.h" #include "parse.h" #include "unwind-prot.h" #include "utils.h" #include "variables.h" #include "DASRT.h" #include "f77-fcn.h" #include "lo-error.h" #ifndef F77_FUNC #define F77_FUNC(x, X) F77_FCN (x, X) #endif typedef int (*dasrt_fcn_ptr) (const double&, const double*, const double*, double*, int&, double*, int*); typedef int (*dasrt_jac_ptr) (const double&, const double*, const double*, double*, const double&, double*, int*); typedef int (*dasrt_constr_ptr) (const int&, const double&, const double*, const int&, double*, double*, int*); extern "C" int F77_FUNC (ddasrt, DASRT) (dasrt_fcn_ptr, const int&, double&, double*, double*, const double&, int*, double*, double*, int&, double*, const int&, int*, const int&, double*, int*, dasrt_jac_ptr, dasrt_constr_ptr, const int&, int*); static DAEFunc::DAERHSFunc user_fsub; static DAEFunc::DAEJacFunc user_jsub; static DAERTFunc::DAERTConstrFunc user_csub; static int nn; static int ddasrt_f (const double& t, const double *state, const double *deriv, double *delta, int& ires, double *rpar, int *ipar) { ColumnVector tmp_state (nn); for (int i = 0; i < nn; i++) tmp_state(i) = state[i]; ColumnVector tmp_deriv (nn); for (int i = 0; i < nn; i++) tmp_deriv(i) = deriv[i]; ColumnVector tmp_fval = (*user_fsub) (tmp_state, tmp_deriv, t, ires); if (tmp_fval.length () == 0) ires = -2; else { for (int i = 0; i < nn; i++) delta[i] = tmp_fval(i); } return 0; } int ddasrt_j (const double& time, const double *state, const double *deriv, double *pd, const double& cj, double *, int *) { // XXX FIXME XXX -- would be nice to avoid copying the data. ColumnVector tmp_state (nn); ColumnVector tmp_deriv (nn); for (int i = 0; i < nn; i++) { tmp_deriv.elem (i) = deriv [i]; tmp_state.elem (i) = state [i]; } Matrix tmp_pd = (*user_jsub) (tmp_state, tmp_deriv, time, cj); for (int j = 0; j < nn; j++) for (int i = 0; i < nn; i++) pd [nn * j + i] = tmp_pd.elem (i, j); return 0; } static int ddasrt_g (const int& neq, const double& t, const double *state, const int& ng, double *gout, double *rpar, int *ipar) { int n = neq; ColumnVector tmp_state (n); for (int i = 0; i < n; i++) tmp_state(i) = state[i]; ColumnVector tmp_fval = (*user_csub) (tmp_state, t); for (int i = 0; i < ng; i++) gout[i] = tmp_fval(i); return 0; } DASRT::DASRT (void) : DAERT () { initialized = false; sanity_checked = false; info.resize (30, 0); ng = 0; liw = 0; lrw = 0; } DASRT::DASRT (const ColumnVector& state, double time, DAERTFunc& f) : DAERT (state, time, f) { n = size (); initialized = false; liw = 20 + n; lrw = 50 + 9*n + n*n; sanity_checked = false; info.resize (15, 0); DAERTFunc::DAERTConstrFunc tmp_csub = DAERTFunc::constraint_function (); if (tmp_csub) { ColumnVector tmp = tmp_csub (state, time); ng = tmp.length (); } else ng = 0; jroot.resize (ng, 1); } DASRT::DASRT (const ColumnVector& state, const ColumnVector& deriv, double time, DAERTFunc& f) : DAERT (state, deriv, time, f) { n = size (); initialized = false; sanity_checked = false; info.resize (30, 0); DAERTFunc::DAERTConstrFunc tmp_csub = DAERTFunc::constraint_function (); if (tmp_csub) { ColumnVector tmp = tmp_csub (state, time); ng = tmp.length (); } else ng = 0; liw = 20 + n + 1000; lrw = 50 + 9*n + n*n + 1000; jroot.resize (ng, 1); } void DASRT::integrate (double tout) { DASRT_result retval; if (! initialized) { info(0) = 0; integration_error = false; user_fsub = DAEFunc::function (); user_jsub = DAEFunc::jacobian_function (); user_csub = DAERTFunc::constraint_function (); if (user_jsub) info(4) = 1; else info(4) = 0; px = x.fortran_vec (); pxdot = xdot.fortran_vec (); nn = n; if (! sanity_checked) { int ires = 0; ColumnVector fval = (*user_fsub) (x, xdot, t, ires); if (fval.length () != x.length ()) { (*current_liboctave_error_handler) ("dassl: inconsistent sizes for state and residual vectors"); integration_error = true; return; } sanity_checked = true; } if (iwork.length () != liw) iwork.resize (liw); if (rwork.length () != lrw) rwork.resize (lrw); abs_tol = absolute_tolerance (); rel_tol = relative_tolerance (); if (initial_step_size () >= 0.0) { rwork(2) = initial_step_size (); info(7) = 1; } else info(7) = 0; if (step_limit () >= 0) { info(11) = 1; iwork(18) = step_limit (); } else info(11) = 0; if (maximum_step_size () >= 0.0) { rwork(1) = maximum_step_size (); info(6) = 1; } else info(6) = 0; pinfo = info.fortran_vec (); piwork = iwork.fortran_vec (); prwork = rwork.fortran_vec (); pjroot = jroot.fortran_vec (); info(5) = 0; info(8) = 0; initialized = true; } if (restart) { info(0) = 0; if (stop_time_set) { info(3) = 1; rwork(0) = stop_time; } else info(3) = 0; } double *dummy = 0; int *idummy = 0; F77_XFCN (ddasrt, DASRT, (ddasrt_f, n, t, px, pxdot, tout, pinfo, &rel_tol, &abs_tol, idid, prwork, lrw, piwork, liw, dummy, idummy, ddasrt_j, ddasrt_g, ng, pjroot)); if (f77_exception_encountered) { integration_error = true; (*current_liboctave_error_handler) ("unrecoverable error in dassl"); } else { switch (idid) { case 0: // Initial conditions made consistent. case 1: // A step was successfully taken in intermediate-output // mode. The code has not yet reached TOUT. case 2: // The integration to TOUT was successfully completed // (T=TOUT) by stepping exactly to TOUT. case 3: // The integration to TOUT was successfully completed // (T=TOUT) by stepping past TOUT. Y(*) is obtained by // interpolation. YPRIME(*) is obtained by interpolation. case 5: // The integration to TSTOP was successfully completed // (T=TSTOP) by stepping to TSTOP within the // tolerance. Must restart to continue. t = tout; break; case 4: // We've hit the stopping condition. break; case -1: // A large amount of work has been expended. (~500 steps). case -2: // The error tolerances are too stringent. case -3: // The local error test cannot be satisfied because you // specified a zero component in ATOL and the // corresponding computed solution component is zero. // Thus, a pure relative error test is impossible for // this component. case -6: // DDASRT had repeated error test failures on the last // attempted step. case -7: // The corrector could not converge. case -8: // The matrix of partial derivatives is singular. case -9: // The corrector could not converge. There were repeated // error test failures in this step. case -10: // The corrector could not converge because IRES was // equal to minus one. case -11: // IRES equal to -2 was encountered and control is being // returned to the calling program. case -12: // DASSL failed to compute the initial YPRIME. case -33: // The code has encountered trouble from which it cannot // recover. A message is printed explaining the trouble // and control is returned to the calling program. For // example, this occurs when invalid input is detected. default: integration_error = true; (*current_liboctave_error_handler) ("ddasrt failed with IDID = %d", idid); break; } } } DASRT_result DASRT::integrate (const ColumnVector& tout) { DASRT_result retval; Matrix x_out; Matrix xdot_out; ColumnVector t_out = tout; int n_out = tout.capacity (); if (n_out > 0 && n > 0) { x_out.resize (n_out, n); xdot_out.resize (n_out, n); for (int i = 0; i < n; i++) { x_out(0,i) = x(i); xdot_out(0,i) = xdot(i); } for (int j = 1; j < n_out; j++) { integrate (tout(j)); if (integration_error) { retval = DASRT_result (x_out, xdot_out, t_out); return retval; } if (idid == 4) t_out(j) = t; else t_out(j) = tout(j); for (int i = 0; i < n; i++) { x_out(j,i) = x(i); xdot_out(j,i) = xdot(i); } if (idid == 4) { x_out.resize (j+1, n); xdot_out.resize (j+1, n); t_out.resize (j+1); break; } } } retval = DASRT_result (x_out, xdot_out, t_out); return retval; } DASRT_result DASRT::integrate (const ColumnVector& tout, const ColumnVector& tcrit) { DASRT_result retval; Matrix x_out; Matrix xdot_out; ColumnVector t_outs = tout; int n_out = tout.capacity (); if (n_out > 0 && n > 0) { x_out.resize (n_out, n); xdot_out.resize (n_out, n); int n_crit = tcrit.capacity (); if (n_crit > 0) { int i_crit = 0; int i_out = 1; double next_crit = tcrit(0); double next_out; while (i_out < n_out) { bool do_restart = false; next_out = tout(i_out); if (i_crit < n_crit) next_crit = tcrit(i_crit); int save_output; double t_out; if (next_crit == next_out) { set_stop_time (next_crit); t_out = next_out; save_output = 1; i_out++; i_crit++; do_restart = true; } else if (next_crit < next_out) { if (i_crit < n_crit) { set_stop_time (next_crit); t_out = next_crit; save_output = 0; i_crit++; do_restart = true; } else { clear_stop_time (); t_out = next_out; save_output = 1; i_out++; } } else { set_stop_time (next_crit); t_out = next_out; save_output = 1; i_out++; } integrate (t_out); if (integration_error) { retval = DASRT_result (x_out, xdot_out, t_outs); return retval; } if (idid == 4) t_out = t; if (save_output) { for (int i = 0; i < n; i++) { x_out(i_out-1,i) = x(i); xdot_out(i_out-1,i) = xdot(i); } t_outs(i_out-1) = t_out; if (idid == 4) { x_out.resize (i_out, n); xdot_out.resize (i_out, n); t_outs.resize (i_out); i_out = n_out; } } if (do_restart) force_restart (); } retval = DASRT_result (x_out, xdot_out, t_outs); } else { retval = integrate (tout); if (integration_error) return retval; } } return retval; } std::string DASRT::error_message (void) const { std::string retval; switch (idid) { default: retval = "unknown error state"; break; } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */