Mercurial > hg > octave-avbm
view doc/interpreter/linalg.texi @ 2653:e7908588548a
[project @ 1997-02-01 16:53:52 by jwe]
author | jwe |
---|---|
date | Sat, 01 Feb 1997 16:57:10 +0000 |
parents | 80a42c3fefc9 |
children | 18192eea4973 |
line wrap: on
line source
@c Copyright (C) 1996 John W. Eaton @c This is part of the Octave manual. @c For copying conditions, see the file gpl.texi. @node Linear Algebra, Nonlinear Equations, Arithmetic, Top @chapter Linear Algebra This chapter documents the linear algebra functions of Octave. Reference material for many of these functions may be found in Golub and Van Loan, @cite{Matrix Computations, 2nd Ed.}, Johns Hopkins, 1989, and in @cite{LAPACK Users' Guide}, SIAM, 1992. @menu * Basic Matrix Functions:: * Matrix Factorizations:: * Functions of a Matrix:: @end menu @node Basic Matrix Functions, Matrix Factorizations, Linear Algebra, Linear Algebra @section Basic Matrix Functions @deftypefn {Loadable Function} {@var{aa} =} balance (@var{a}, @var{opt}) @deftypefnx {Loadable Function} {[@var{dd}, @var{aa}] =} balance (@var{a}, @var{opt}) @deftypefnx {Loadable Function} {[@var{cc}, @var{dd}, @var{aa}, @var{bb]} =} balance (@var{a}, @var{b}, @var{opt}) @code{[dd, aa] = balance (a)} returns @code{aa = dd \ a * dd}. @code{aa} is a matrix whose row/column norms are roughly equal in magnitude, and @code{dd} = @code{p * d}, where @code{p} is a permutation matrix and @code{d} is a diagonal matrix of powers of two. This allows the equilibration to be computed without roundoff. Results of eigenvalue calculation are typically improved by balancing first. @code{[cc, dd, aa, bb] = balance (a, b)} returns @code{aa} (@code{bb}) @code{= cc*a*dd (cc*b*dd)}), where @code{aa} and @code{bb} have non-zero elements of approximately the same magnitude and @code{cc} and @code{dd} are permuted diagonal matrices as in @code{dd} for the algebraic eigenvalue problem. The eigenvalue balancing option @code{opt} is selected as follows: @table @asis @item @code{"N"}, @code{"n"} No balancing; arguments copied, transformation(s) set to identity. @item @code{"P"}, @code{"p"} Permute argument(s) to isolate eigenvalues where possible. @item @code{"S"}, @code{"s"} Scale to improve accuracy of computed eigenvalues. @item @code{"B"}, @code{"b"} Permute and scale, in that order. Rows/columns of a (and b) that are isolated by permutation are not scaled. This is the default behavior. @end table Algebraic eigenvalue balancing uses standard LAPACK routines. Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Journal on Scientific and Statistical Computing, 1981). @end deftypefn @deftypefn {} {} cond (@var{a}) Compute the (two-norm) condition number of a matrix. @code{cond (a)} is defined as @code{norm (a) * norm (inv (a))}, and is computed via a singular value decomposition. @end deftypefn @deftypefn {Loadable Function} {} det (@var{a}) Compute the determinant of @var{a} using LINPACK. @end deftypefn @deftypefn {Loadable Function} {@var{lambda} =} eig (@var{a}) @deftypefnx {Loadable Function} {[@var{v}, @var{lambda}] =} eig (@var{a}) The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which begins with a Hessenberg decomposition (see @code{hess}), followed by a Schur decomposition (see @code{schur}), from which the eigenvalues are apparent. The eigenvectors, when desired, are computed by further manipulations of the Schur decomposition. See also: @code{hess}, @code{schur}. @end deftypefn @deftypefn {Loadable Function} {@var{G} =} givens (@var{x}, @var{y}) @deftypefnx {Loadable Function} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y}) @code{G = givens(x, y)} returns a @iftex @tex $2\times 2$ @end tex @end iftex @ifinfo 2 x 2 @end ifinfo orthogonal matrix @code{G = [c s; -s' c]} such that @code{G [x; y] = [*; 0]} (x, y scalars) @end deftypefn @deftypefn {Loadable Function} {} inv (@var{a}) @deftypefnx {Loadable Function} {} inverse (@var{a}) Compute the inverse of the square matrix @var{a}. @end deftypefn @deftypefn {Function File} {} norm (@var{a}, @var{p}) Compute the p-norm of the matrix @var{a}. If the second argument is missing, @code{p = 2} is assumed. If @var{a} is a matrix: @table @asis @item @var{p} = @code{1} 1-norm, the largest column sum of @var{a}. @item @var{p} = @code{2} Largest singular value of @var{a}. @item @var{p} = @code{Inf} Infinity norm, the largest row sum of @var{a}. @item @var{p} = @code{"fro"} Frobenius norm of @var{a}, @code{sqrt (sum (diag (a' * a)))}. @end table If @var{a} is a vector or a scalar: @table @asis @item @var{p} = @code{Inf} @code{max (abs (a))}. @item @var{p} = @code{-Inf} @code{min (abs (a))}. @item other p-norm of @var{a}, @code{(sum (abs (a) .^ p)) ^ (1/p)}. @end table @end deftypefn @deftypefn {Function File} {} null (@var{a}, @var{tol}) Returns an orthonormal basis of the null space of @var{a}. The dimension of the null space is taken as the number of singular values of @var{a} not greater than @var{tol}. If the argument @var{tol} is missing, it is computed as @example max (size (a)) * max (svd (a)) * eps @end example @end deftypefn @deftypefn {Function File} {} orth (@var{a}, @var{tol}) Returns an orthonormal basis of the range space of @var{a}. The dimension of the range space is taken as the number of singular values of @var{a} greater than @var{tol}. If the argument @var{tol} is missing, it is computed as @example max (size (a)) * max (svd (a)) * eps @end example @end deftypefn @deftypefn {Function File} {} pinv (@var{X}, @var{tol}) Returns the pseudoinverse of @var{X}. Singular values less than @var{tol} are ignored. If the second argument is omitted, it is assumed that @example tol = max (size (X)) * sigma_max (X) * eps, @end example @noindent where @code{sigma_max (@var{X})} is the maximal singular value of @var{X}. @end deftypefn @deftypefn {Function File} {} rank (@var{a}, @var{tol}) Compute the rank of @var{a}, using the singular value decomposition. The rank is taken to be the number of singular values of @var{a} that are greater than the specified tolerance @var{tol}. If the second argument is omitted, it is taken to be @example tol = max (size (a)) * sigma (1) * eps; @end example @noindent where @code{eps} is machine precision and @code{sigma} is the largest singular value of @code{a}. @end deftypefn @deftypefn {Function File} {} trace (@var{a}) Compute the trace of @var{a}, @code{sum (diag (a))}. @end deftypefn @node Matrix Factorizations, Functions of a Matrix, Basic Matrix Functions, Linear Algebra @section Matrix Factorizations @deftypefn {Loadable Function} {} chol (@var{a}) Compute the Cholesky factor, @var{r}, of the symmetric positive definite matrix @var{a}, where @iftex @tex $ R^T R = A $. @end tex @end iftex @ifinfo @example r' * r = a. @end example @end ifinfo @end deftypefn @deftypefn {Loadable Function} {@var{h} =} hess (@var{a}) @deftypefnx {Loadable Function} {[@var{p}, @var{h}] =} hess (@var{a}) Compute the Hessenberg decomposition of the matrix @var{a}. The Hessenberg decomposition is usually used as the first step in an eigenvalue computation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979. The Hessenberg decomposition is @code{p * h * p' = a} where @code{p} is a square unitary matrix (@code{p' * p = I}, using complex-conjugate transposition) and @code{h} is upper Hessenberg (@code{i >= j+1 => h (i, j) = 0}). @end deftypefn @deftypefn {Loadable Function} {[@var{l}, @var{u}, @var{p}] =} lu (@var{a}) Compute the LU decomposition of @var{a}, using subroutines from LAPACK. The result is returned in a permuted form, according to the optional return value @var{p}. For example, given the matrix @code{a = [1, 2; 3, 4]}, @example [l, u, p] = lu (a) @end example @noindent returns @example l = 1.00000 0.00000 0.33333 1.00000 u = 3.00000 4.00000 0.00000 0.66667 p = 0 1 1 0 @end example @end deftypefn @deftypefn {Loadable Function} {[@var{q}, @var{r}] =} qr (@var{a}) Compute the QR factorization of @var{a}, using standard LAPACK subroutines. For example, given the matrix @code{a = [1, 2; 3, 4]}, @example [q, r] = qr (a) @end example @noindent returns @example q = -0.31623 -0.94868 -0.94868 0.31623 r = -3.16228 -4.42719 0.00000 -0.63246 @end example The @code{qr} factorization has applications in the solution of least squares problems @iftex @tex $$ \min_x \left\Vert A x - b \right\Vert_2 $$ @end tex @end iftex @ifinfo @example @code{min norm(A x - b)} @end example @end ifinfo for overdetermined systems of equations (i.e., @iftex @tex $A$ @end tex @end iftex @ifinfo @code{a} @end ifinfo is a tall, thin matrix). The @code{qr} factorization is @code{q * r = a} where @code{q} is an orthogonal matrix and @code{r} is upper triangular. The permuted @code{qr} factorization @code{[q, r, pi] = qr (a)} forms the @code{qr} factorization such that the diagonal entries of @code{r} are decreasing in magnitude order. For example, given the matrix @code{a = [1, 2; 3, 4]}, @example [q, r, pi] = qr(a) @end example @noindent returns @example q = -0.44721 -0.89443 -0.89443 0.44721 r = -4.47214 -3.13050 0.00000 0.44721 p = 0 1 1 0 @end example The permuted @code{qr} factorization @code{[q, r, pi] = qr (a)} factorization allows the construction of an orthogonal basis of @code{span (a)}. @end deftypefn @deftypefn {Loadable Function} {@var{s}} schur (@var{a}) @deftypefnx {Loadable Function} {[@var{u}, @var{s}] =} schur (@var{a}, @var{opt}) The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see @code{are} and @code{dare}). @code{schur} always returns @iftex @tex $S = U^T A U$ @end tex @end iftex @ifinfo @code{s = u' * a * u} @end ifinfo where @iftex @tex $U$ @end tex @end iftex @ifinfo @code{u} @end ifinfo is a unitary matrix @iftex @tex ($U^T U$ is identity) @end tex @end iftex @ifinfo (@code{u'* u} is identity) @end ifinfo and @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo is upper triangular. The eigenvalues of @iftex @tex $A$ (and $S$) @end tex @end iftex @ifinfo @code{a} (and @code{s}) @end ifinfo are the diagonal elements of @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo If the matrix @iftex @tex $A$ @end tex @end iftex @ifinfo @code{a} @end ifinfo is real, then the real Schur decomposition is computed, in which the matrix @iftex @tex $U$ @end tex @end iftex @ifinfo @code{u} @end ifinfo is orthogonal and @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo is block upper triangular with blocks of size at most @iftex @tex $2\times 2$ @end tex @end iftex @ifinfo @code{2 x 2} @end ifinfo blocks along the diagonal. The diagonal elements of @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo (or the eigenvalues of the @iftex @tex $2\times 2$ @end tex @end iftex @ifinfo @code{2 x 2} @end ifinfo blocks, when appropriate) are the eigenvalues of @iftex @tex $A$ @end tex @end iftex @ifinfo @code{a} @end ifinfo and @iftex @tex $S$. @end tex @end iftex @ifinfo @code{s}. @end ifinfo The eigenvalues are optionally ordered along the diagonal according to the value of @code{opt}. @code{opt = "a"} indicates that all eigenvalues with negative real parts should be moved to the leading block of @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo (used in @code{are}), @code{opt = "d"} indicates that all eigenvalues with magnitude less than one should be moved to the leading block of @iftex @tex $S$ @end tex @end iftex @ifinfo @code{s} @end ifinfo (used in @code{dare}), and @code{opt = "u"}, the default, indicates that no ordering of eigenvalues should occur. The leading @iftex @tex $k$ @end tex @end iftex @ifinfo @code{k} @end ifinfo columns of @iftex @tex $U$ @end tex @end iftex @ifinfo @code{u} @end ifinfo always span the @iftex @tex $A$-invariant @end tex @end iftex @ifinfo @code{a}-invariant @end ifinfo subspace corresponding to the @iftex @tex $k$ @end tex @end iftex @ifinfo @code{k} @end ifinfo leading eigenvalues of @iftex @tex $S$. @end tex @end iftex @ifinfo @code{s}. @end ifinfo @end deftypefn @deftypefn {Loadable Function} {@var{s} =} svd (@var{a}) @deftypefnx {Loadable Function} {[@var{u}, @var{s}, @var{v}] =} svd (@var{a}) Compute the singular value decomposition of @var{a} @iftex @tex $$ A = U\Sigma V^H $$ @end tex @end iftex @ifinfo @example a = u * sigma * v' @end example @end ifinfo The function @code{svd} normally returns the vector of singular values. If asked for three return values, it computes @iftex @tex $U$, $S$, and $V$. @end tex @end iftex @ifinfo U, S, and V. @end ifinfo For example, @example svd (hilb (3)) @end example @noindent returns @example ans = 1.4083189 0.1223271 0.0026873 @end example @noindent and @example [u, s, v] = svd (hilb (3)) @end example @noindent returns @example u = -0.82704 0.54745 0.12766 -0.45986 -0.52829 -0.71375 -0.32330 -0.64901 0.68867 s = 1.40832 0.00000 0.00000 0.00000 0.12233 0.00000 0.00000 0.00000 0.00269 v = -0.82704 0.54745 0.12766 -0.45986 -0.52829 -0.71375 -0.32330 -0.64901 0.68867 @end example If given a second argument, @code{svd} returns an economy-sized decomposition, eliminating the unnecessary rows or columns of @var{u} or @var{v}. @end deftypefn @node Functions of a Matrix, , Matrix Factorizations, Linear Algebra @section Functions of a Matrix @deftypefn {Loadable Function} {} expm (@var{a}) Returns the exponential of a matrix, defined as the infinite Taylor series @iftex @tex $$ \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots $$ @end tex @end iftex @ifinfo @example expm(a) = I + a + a^2/2! + a^3/3! + ... @end example @end ifinfo The Taylor series is @emph{not} the way to compute the matrix exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine uses Ward's diagonal @iftex @tex Pad\'e @end tex @end iftex @ifinfo Pade' @end ifinfo approximation method with three step preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal @iftex @tex Pad\'e @end tex @end iftex @ifinfo Pade' @end ifinfo approximations are rational polynomials of matrices @iftex @tex $D_q(a)^{-1}N_q(a)$ @end tex @end iftex @ifinfo @example -1 D (a) N (a) @end example @end ifinfo whose Taylor series matches the first @iftex @tex $2 q + 1 $ @end tex @end iftex @ifinfo @code{2q+1} @end ifinfo terms of the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning steps) may be desirable in lieu of the @iftex @tex Pad\'e @end tex @end iftex @ifinfo Pade' @end ifinfo approximation when @iftex @tex $D_q(a)$ @end tex @end iftex @ifinfo @code{Dq(a)} @end ifinfo is ill-conditioned. @end deftypefn @deftypefn {Loadable Function} {} logm (@var{a}) Compute the matrix logarithm of the square matrix @var{a}. Note that this is currently implemented in terms of an eigenvalue expansion and needs to be improved to be more robust. @end deftypefn @deftypefn {Loadable Function} {} sqrtm (@var{a}) Compute the matrix square root of the square matrix @var{a}. Note that this is currently implemented in terms of an eigenvalue expansion and needs to be improved to be more robust. @end deftypefn @deftypefn {Function File} {} kron (@var{a}, @var{b}) Form the kronecker product of two matrices, defined block by block as @example x = [a(i, j) b] @end example @end deftypefn @deftypefn {Function File} {} qzhess (@var{a}, @var{b}) Compute the Hessenberg-triangular decomposition of the matrix pencil @code{(a, b)}. This function returns @code{aa = q * a * z}, @code{bb = q * b * z}, @code{q}, @code{z} orthogonal. For example, @example [aa, bb, q, z] = qzhess (a, b) @end example The Hessenberg-triangular decomposition is the first step in Moler and Stewart's QZ decomposition algorithm. (The QZ decomposition will be included in a later release of Octave.) Algorithm taken from Golub and Van Loan, @cite{Matrix Computations, 2nd edition}. @end deftypefn @deftypefn {Loadable Function} {} qzval (@var{a}, @var{b}) Compute generalized eigenvalues. @end deftypefn @deftypefn {Loadable Function} {} syl (@var{a}, @var{b}, @var{c}) Solve the Sylvester equation @iftex @tex $$ A X + X B + C = 0 $$ @end tex @end iftex @ifinfo @example A X + X B + C = 0 @end example @end ifinfo using standard LAPACK subroutines. @end deftypefn