Mercurial > hg > octave-avbm
view scripts/control/hinf/hinfsyn_ric.m @ 5016:bdbee5282954
[project @ 2004-09-22 02:50:35 by jwe]
author | jwe |
---|---|
date | Wed, 22 Sep 2004 02:50:36 +0000 |
parents | 22bd65326ec1 |
children | 4c8a2e4e0717 |
line wrap: on
line source
## Copyright (C) 1996, 1998 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{xinf}, @var{x_ha_err}] =} hinfsyn_ric (@var{a}, @var{bb}, @var{c1}, @var{d1dot}, @var{r}, @var{ptol}) ## Forms ## @example ## xx = ([bb; -c1'*d1dot]/r) * [d1dot'*c1 bb']; ## Ha = [a 0*a; -c1'*c1 - a'] - xx; ## @end example ## and solves associated Riccati equation. ## The error code @var{x_ha_err} indicates one of the following ## conditions: ## @table @asis ## @item 0 ## successful ## @item 1 ## @var{xinf} has imaginary eigenvalues ## @item 2 ## @var{hx} not Hamiltonian ## @item 3 ## @var{xinf} has infinite eigenvalues (numerical overflow) ## @item 4 ## @var{xinf} not symmetric ## @item 5 ## @var{xinf} not positive definite ## @item 6 ## @var{r} is singular ## @end table ## @end deftypefn function [Xinf, x_ha_err] = hinfsyn_ric (A, BB, C1, d1dot, R, ptol) x_ha_err = 0; # assume success Xinf = []; # default return value n = issquare(A); nw = issquare(R); if(rank(R) != nw) x_ha_err = 6; else # build hamiltonian Ha for X_inf xx = ([BB; -C1'*d1dot]/R) * [d1dot'*C1, BB']; Ha = [A, 0*A; -C1'*C1, -A'] - xx; x_ha_err = 0; [d, Ha] = balance(Ha); [u, s] = schur(Ha, "A"); rev = real(eig(s)); if (any(abs(rev) <= ptol)) # eigenvalues near the imaginary axis x_ha_err = 1; elseif (sum(rev > 0) != sum(rev < 0)) ## unequal number of positive and negative eigenvalues x_ha_err = 2; else ## compute positive Riccati equation solution u = d * u; Xinf = u(n+1:2*n,1:n) / u(1:n,1:n); if (!all(all(finite(Xinf)))) x_ha_err = 3; elseif (norm(Xinf-Xinf') >= 10*ptol) ## solution not symmetric x_ha_err = 4; else ## positive semidefinite? ## force symmetry (faster, avoids some convergence problems) Xinf = (Xinf + Xinf')/2; rev = eig(Xinf); if (any(rev <= -ptol)) x_ha_err = 5; endif endif endif endif endfunction