view scripts/general/cplxpair.m @ 14868:5d3a684236b0

maint: Use Octave coding conventions for cuddling parentheses in scripts directory * lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m, colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m, int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m, __isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m, rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m, inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m, gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m, ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m, compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m, getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m, __xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m, fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m, copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m, installed_packages.m, is_architecture_dependent.m, load_package_dirs.m, print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m, allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m, comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m, fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, print.m, __add_datasource__.m, __add_default_menu__.m, __axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m, __errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m, __ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m, __go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m, __pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m, __stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m, __uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m, surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m, mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m, addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m, arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m, hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m, stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m, __sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m, treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m, magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m, quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m, bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m, kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m, z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m, strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m, test.m, now.m: Use Octave coding conventions for cuddling parentheses in scripts directory.
author Rik <octave@nomad.inbox5.com>
date Tue, 17 Jul 2012 07:08:39 -0700
parents 86854d032a37
children
line wrap: on
line source

## Copyright (C) 2000-2012 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} cplxpair (@var{z})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol})
## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim})
## Sort the numbers @var{z} into complex conjugate pairs ordered by
## increasing real part.  Place the negative imaginary complex number
## first within each pair.  Place all the real numbers (those with
## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the
## complex pairs.
##
## If @var{tol} is unspecified the default value is 100*@code{eps}.
##
## By default the complex pairs are sorted along the first non-singleton
## dimension of @var{z}.  If @var{dim} is specified, then the complex
## pairs are sorted along this dimension.
##
## Signal an error if some complex numbers could not be paired.  Signal an
## error if all complex numbers are not exact conjugates (to within
## @var{tol}).  Note that there is no defined order for pairs with identical
## real parts but differing imaginary parts.
## @c Set example in small font to prevent overfull line
##
## @smallexample
## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
## @end smallexample
## @end deftypefn

## FIXME: subsort returned pairs by imaginary magnitude
## FIXME: Why doesn't exp (2i*pi*[0:4]'/5) produce exact conjugates.  Does
## FIXME: it in Matlab?  The reason is that complex pairs are supposed
## FIXME: to be exact conjugates, and not rely on a tolerance test.

## 2006-05-12 David Bateman - Modified for NDArrays

function y = cplxpair (z, tol, dim)

  if (nargin < 1 || nargin > 3)
    print_usage ();
  endif

  if (length (z) == 0)
    y = zeros (size (z));
    return;
  endif

  if (nargin < 2 || isempty (tol))
    if (isa (z, "single"))
      tol = 100 * eps("single");
    else
      tol = 100*eps;
    endif
  endif

  nd = ndims (z);
  orig_dims = size (z);
  if (nargin < 3)
    ## Find the first singleton dimension.
    dim = 0;
    while (dim < nd && orig_dims(dim+1) == 1)
      dim++;
    endwhile
    dim++;
    if (dim > nd)
      dim = 1;
    endif
  else
    dim = floor (dim);
    if (dim < 1 || dim > nd)
      error ("cplxpair: invalid dimension along which to sort");
    endif
  endif

  ## Move dimension to treat first, and convert to a 2-D matrix.
  perm = [dim:nd, 1:dim-1];
  z = permute (z, perm);
  sz = size (z);
  n = sz (1);
  m = prod (sz) / n;
  z = reshape (z, n, m);

  ## Sort the sequence in terms of increasing real values.
  [q, idx] = sort (real (z), 1);
  z = z(idx + n * ones (n, 1) * [0:m-1]);

  ## Put the purely real values at the end of the returned list.
  cls = "double";
  if (isa (z, "single"))
    cls = "single";
  endif
  [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin (cls)) < tol);
  q = sparse (idxi, idxj, 1, n, m);
  nr = sum (q, 1);
  [q, idx] = sort (q, 1);
  z = z(idx);
  y = z;

  ## For each remaining z, place the value and its conjugate at the
  ## start of the returned list, and remove them from further
  ## consideration.
  for j = 1:m
    p = n - nr(j);
    for i = 1:2:p
      if (i+1 > p)
        error ("cplxpair: could not pair all complex numbers");
      endif
      [v, idx] = min (abs (z(i+1:p) - conj (z(i))));
      if (v > tol)
        error ("cplxpair: could not pair all complex numbers");
      endif
      if (imag (z(i)) < 0)
        y([i, i+1]) = z([i, idx+i]);
      else
        y([i, i+1]) = z([idx+i, i]);
      endif
      z(idx+i) = z(i+1);
    endfor
  endfor

  ## Reshape the output matrix.
  y = ipermute (reshape (y, sz), perm);

endfunction


%!demo
%! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ]

%!assert (isempty (cplxpair ([])))
%!assert (cplxpair (1), 1)
%!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i])
%!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ...
%!                  [1-1i, 1+1i, 1-1i, 1+1i, 1, 2])
%!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ...
%!                  [1-1i; 1+1i; 1-1i; 1+1i; 1; 2])
%!assert (cplxpair ([0, 1, 2]), [0, 1, 2])

%!shared z
%! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7);
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))]), [z,z])
%!assert (cplxpair ([z(randperm(7)),z(randperm(7))],[],1), [z,z])
%!assert (cplxpair ([z(randperm(7)).';z(randperm(7)).'],[],2), [z.';z.'])

%!## tolerance test
%!assert (cplxpair ([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)])