Mercurial > hg > octave-avbm
view src/DLD-FUNCTIONS/besselj.cc @ 5275:23b37da9fd5b
[project @ 2005-04-08 16:07:35 by jwe]
author | jwe |
---|---|
date | Fri, 08 Apr 2005 16:07:37 +0000 |
parents | 9f7ef92b50b0 |
children | 4c8a2e4e0717 |
line wrap: on
line source
/* Copyright (C) 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-specfun.h" #include "quit.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" enum bessel_type { BESSEL_J, BESSEL_Y, BESSEL_I, BESSEL_K, BESSEL_H1, BESSEL_H2 }; #define DO_BESSEL(type, alpha, x, scaled, ierr, result) \ do \ { \ switch (type) \ { \ case BESSEL_J: \ result = besselj (alpha, x, scaled, ierr); \ break; \ \ case BESSEL_Y: \ result = bessely (alpha, x, scaled, ierr); \ break; \ \ case BESSEL_I: \ result = besseli (alpha, x, scaled, ierr); \ break; \ \ case BESSEL_K: \ result = besselk (alpha, x, scaled, ierr); \ break; \ \ case BESSEL_H1: \ result = besselh1 (alpha, x, scaled, ierr); \ break; \ \ case BESSEL_H2: \ result = besselh2 (alpha, x, scaled, ierr); \ break; \ \ default: \ break; \ } \ } \ while (0) static inline Matrix int_array2_to_matrix (const Array2<octave_idx_type>& a) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); Matrix retval (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { OCTAVE_QUIT; retval(i,j) = (double) (a(i,j)); } return retval; } static inline NDArray int_arrayN_to_array (const ArrayN<int>& a) { dim_vector dv = a.dims (); int nel = dv.numel (); NDArray retval (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; retval(i) = (double) (a(i)); } return retval; } static void gripe_bessel_arg (const char *fn, const char *arg) { error ("%s: expecting scalar or matrix as %s argument", fn, arg); } octave_value_list do_bessel (enum bessel_type type, const char *fn, const octave_value_list& args, int nargout) { octave_value_list retval; int nargin = args.length (); if (nargin == 2 || nargin == 3) { bool scaled = (nargin == 3); octave_value alpha_arg = args(0); octave_value x_arg = args(1); if (alpha_arg.is_scalar_type ()) { double alpha = args(0).double_value (); if (! error_state) { if (x_arg.is_scalar_type ()) { Complex x = x_arg.complex_value (); if (! error_state) { octave_idx_type ierr; octave_value result; DO_BESSEL (type, alpha, x, scaled, ierr, result); if (nargout > 1) retval(1) = (double) ierr; retval(0) = result; } else gripe_bessel_arg (fn, "second"); } else { ComplexNDArray x = x_arg.complex_array_value (); if (! error_state) { ArrayN<octave_idx_type> ierr; octave_value result; DO_BESSEL (type, alpha, x, scaled, ierr, result); if (nargout > 1) retval(1) = int_arrayN_to_array (ierr); retval(0) = result; } else gripe_bessel_arg (fn, "second"); } } else gripe_bessel_arg (fn, "first"); } else { dim_vector dv0 = args(0).dims (); dim_vector dv1 = args(1).dims (); bool args0_is_row_vector = (dv0 (1) == dv0.numel ()); bool args1_is_col_vector = (dv1 (0) == dv1.numel ()); if (args0_is_row_vector && args1_is_col_vector) { RowVector ralpha = args(0).row_vector_value (); if (! error_state) { ComplexColumnVector cx = x_arg.complex_column_vector_value (); if (! error_state) { Array2<octave_idx_type> ierr; octave_value result; DO_BESSEL (type, ralpha, cx, scaled, ierr, result); if (nargout > 1) retval(1) = int_array2_to_matrix (ierr); retval(0) = result; } else gripe_bessel_arg (fn, "second"); } else gripe_bessel_arg (fn, "first"); } else { NDArray alpha = args(0).array_value (); if (! error_state) { if (x_arg.is_scalar_type ()) { Complex x = x_arg.complex_value (); if (! error_state) { ArrayN<octave_idx_type> ierr; octave_value result; DO_BESSEL (type, alpha, x, scaled, ierr, result); if (nargout > 1) retval(1) = int_arrayN_to_array (ierr); retval(0) = result; } else gripe_bessel_arg (fn, "second"); } else { ComplexNDArray x = x_arg.complex_array_value (); if (! error_state) { ArrayN<octave_idx_type> ierr; octave_value result; DO_BESSEL (type, alpha, x, scaled, ierr, result); if (nargout > 1) retval(1) = int_arrayN_to_array (ierr); retval(0) = result; } else gripe_bessel_arg (fn, "second"); } } else gripe_bessel_arg (fn, "first"); } } } else print_usage (fn); return retval; } DEFUN_DLD (besselj, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{j}, @var{ierr}] =} besselj (@var{alpha}, @var{x}, @var{opt})\n\ @deftypefnx {Loadable Function} {[@var{y}, @var{ierr}] =} bessely (@var{alpha}, @var{x}, @var{opt})\n\ @deftypefnx {Loadable Function} {[@var{i}, @var{ierr}] =} besseli (@var{alpha}, @var{x}, @var{opt})\n\ @deftypefnx {Loadable Function} {[@var{k}, @var{ierr}] =} besselk (@var{alpha}, @var{x}, @var{opt})\n\ @deftypefnx {Loadable Function} {[@var{h}, @var{ierr}] =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})\n\ Compute Bessel or Hankel functions of various kinds:\n\ \n\ @table @code\n\ @item besselj\n\ Bessel functions of the first kind.\n\ @item bessely\n\ Bessel functions of the second kind.\n\ @item besseli\n\ Modified Bessel functions of the first kind.\n\ @item besselk\n\ Modified Bessel functions of the second kind.\n\ @item besselh\n\ Compute Hankel functions of the first (@var{k} = 1) or second (@var{k}\n\ = 2) kind.\n\ @end table\n\ \n\ If the argument @var{opt} is supplied, the result is scaled by the\n\ @code{exp (-I*@var{x})} for @var{k} = 1 or @code{exp (I*@var{x})} for\n\ @var{k} = 2.\n\ \n\ If @var{alpha} is a scalar, the result is the same size as @var{x}.\n\ If @var{x} is a scalar, the result is the same size as @var{alpha}.\n\ If @var{alpha} is a row vector and @var{x} is a column vector, the\n\ result is a matrix with @code{length (@var{x})} rows and\n\ @code{length (@var{alpha})} columns. Otherwise, @var{alpha} and\n\ @var{x} must conform and the result will be the same size.\n\ \n\ The value of @var{alpha} must be real. The value of @var{x} may be\n\ complex.\n\ \n\ If requested, @var{ierr} contains the following status information\n\ and is the same size as the result.\n\ \n\ @enumerate 0\n\ @item\n\ Normal return.\n\ @item\n\ Input error, return @code{NaN}.\n\ @item\n\ Overflow, return @code{Inf}.\n\ @item\n\ Loss of significance by argument reduction results in less than\n\ half of machine accuracy.\n\ @item\n\ Complete loss of significance by argument reduction, return @code{NaN}.\n\ @item\n\ Error---no computation, algorithm termination condition not met,\n\ return @code{NaN}.\n\ @end enumerate\n\ @end deftypefn") { return do_bessel (BESSEL_J, "besselj", args, nargout); } DEFUN_DLD (bessely, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{y}, @var{ierr}] =} bessely (@var{alpha}, @var{x}, @var{opt})\n\ See besselj.\n\ @end deftypefn") { return do_bessel (BESSEL_Y, "bessely", args, nargout); } DEFUN_DLD (besseli, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{i}, @var{ierr}] =} besseli (@var{alpha}, @var{x}, @var{opt})\n\ See besselj.\n\ @end deftypefn") { return do_bessel (BESSEL_I, "besseli", args, nargout); } DEFUN_DLD (besselk, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{k}, @var{ierr}] =} besselk (@var{alpha}, @var{x}, @var{opt})\n\ See besselj.\n\ @end deftypefn") { return do_bessel (BESSEL_K, "besselk", args, nargout); } DEFUN_DLD (besselh, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{h}, @var{ierr}] =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})\n\ See besselj.\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin == 2) { retval = do_bessel (BESSEL_H1, "besselh", args, nargout); } else if (nargin == 3 || nargin == 4) { octave_idx_type kind = args(1).int_value (); if (! error_state) { octave_value_list tmp_args; if (nargin == 4) tmp_args(2) = args(3); tmp_args(1) = args(2); tmp_args(0) = args(0); if (kind == 1) retval = do_bessel (BESSEL_H1, "besselh", tmp_args, nargout); else if (kind == 2) retval = do_bessel (BESSEL_H2, "besselh", tmp_args, nargout); else error ("besselh: expecting K = 1 or 2"); } else error ("besselh: invalid value of K"); } else print_usage ("besselh"); return retval; } DEFUN_DLD (airy, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{a}, @var{ierr}] =} airy (@var{k}, @var{z}, @var{opt})\n\ Compute Airy functions of the first and second kind, and their\n\ derivatives.\n\ \n\ @example\n\ K Function Scale factor (if a third argument is supplied)\n\ --- -------- ----------------------------------------------\n\ 0 Ai (Z) exp ((2/3) * Z * sqrt (Z))\n\ 1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))\n\ 2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))\n\ 3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))\n\ @end example\n\ \n\ The function call @code{airy (@var{z})} is equivalent to\n\ @code{airy (0, @var{z})}.\n\ \n\ The result is the same size as @var{z}.\n\ \n\ If requested, @var{ierr} contains the following status information and\n\ is the same size as the result.\n\ \n\ @enumerate 0\n\ @item\n\ Normal return.\n\ @item\n\ Input error, return @code{NaN}.\n\ @item\n\ Overflow, return @code{Inf}.\n\ @item\n\ Loss of significance by argument reduction results in less than half\n\ of machine accuracy.\n\ @item\n\ Complete loss of significance by argument reduction, return @code{NaN}.\n\ @item\n\ Error---no computation, algorithm termination condition not met,\n\ return @code{NaN}\n\ @end enumerate\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin > 0 && nargin < 4) { bool scale = (nargin == 3); int kind = 0; ComplexNDArray z; if (nargin > 1) { double d_kind = args(0).double_value (); if (! error_state) { kind = (int) d_kind; if (kind < 0 || kind > 3) error ("airy: expecting K = 0, 1, 2, or 3"); } else error ("airy: expecting integer value for K"); } if (! error_state) { z = args(nargin == 1 ? 0 : 1).complex_array_value (); if (! error_state) { ArrayN<octave_idx_type> ierr; octave_value result; if (kind > 1) result = biry (z, kind == 3, scale, ierr); else result = airy (z, kind == 1, scale, ierr); if (nargout > 1) retval(1) = int_arrayN_to_array (ierr); retval(0) = result; } else error ("airy: expecting complex matrix for Z"); } } else print_usage ("airy"); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */