Mercurial > hg > octave-avbm
view scripts/statistics/distributions/betapdf.m @ 11472:1740012184f9
Use uppercase for variable names in error() strings to match Info documentation. Only m-files done.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 09 Jan 2011 21:33:04 -0800 |
parents | 34c5cd5a17ec |
children | fd0a3ac60b0e |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 2005, 2006, 2007 Kurt Hornik ## Copyright (C) 2010 Christos Dimitrakakis ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} betapdf (@var{x}, @var{a}, @var{b}) ## For each element of @var{x}, returns the PDF at @var{x} of the beta ## distribution with parameters @var{a} and @var{b}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at>, CD <christos.dimitrakakis@gmail.com> ## Description: PDF of the Beta distribution function pdf = betapdf (x, a, b) if (nargin != 3) print_usage (); endif if (!isscalar (a) || !isscalar(b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("betapdf: X, A and B must be of common size or scalar"); endif endif sz = size (x); pdf = zeros (sz); k = find (!(a > 0) | !(b > 0) | isnan (x)); if (any (k)) pdf (k) = NaN; endif k = find ((x > 0) & (x < 1) & (a > 0) & (b > 0) & ((a != 1) | (b != 1))); if (any (k)) if (isscalar(a) && isscalar(b)) pdf(k) = exp ((a - 1) .* log (x(k)) + (b - 1) .* log (1 - x(k)) + lgamma(a + b) - lgamma(a) - lgamma(b)); else pdf(k) = exp ((a(k) - 1) .* log (x(k)) + (b(k) - 1) .* log (1 - x(k)) + lgamma(a(k) + b(k)) - lgamma(a(k)) - lgamma(b(k))); endif endif ## Most important special cases when the density is finite. k = find ((x == 0) & (a == 1) & (b > 0) & (b != 1)); if (any (k)) if (isscalar(a) && isscalar(b)) pdf(k) = exp(lgamma(a + b) - lgamma(a) - lgamma(b)); else pdf(k) = exp(lgamma(a(k) + b(k)) - lgamma(a(k)) - lgamma(b(k))); endif endif k = find ((x == 1) & (b == 1) & (a > 0) & (a != 1)); if (any (k)) if (isscalar(a) && isscalar(b)) pdf(k) = exp(lgamma(a + b) - lgamma(a) - lgamma(b)); else pdf(k) = exp(lgamma(a(k) + b(k)) - lgamma(a(k)) - lgamma(b(k))); endif endif k = find ((x >= 0) & (x <= 1) & (a == 1) & (b == 1)); if (any (k)) pdf(k) = 1; endif ## Other special case when the density at the boundary is infinite. k = find ((x == 0) & (a < 1)); if (any (k)) pdf(k) = Inf; endif k = find ((x == 1) & (b < 1)); if (any (k)) pdf(k) = Inf; endif endfunction %% Test large values for betapdf %!assert (betapdf(0.5, 1000, 1000), 35.678, 1e-3)