view progs/mincstats/mincstats.c @ 2341:e08a62da00b9

Add warning message for mincstats -mask w/o -mask_range, -mask_binvalue, etc.
author bert <bert>
date Fri, 29 Jul 2005 16:46:14 +0000
parents 59f1bf3119f3
children
line wrap: on
line source

/* mincstats.c
 *
 * Andrew Janke - rotor@cmr.uq.edu.au
 * Centre for Magnetic Resonance
 * University of Queensland, Australia
 *
 * $Log: mincstats.c,v $
 * Revision 1.14.2.5  2005-07-29 16:46:14  bert
 * Add warning message for mincstats -mask w/o -mask_range, -mask_binvalue, etc.
 *
 * Revision 1.14.2.4  2005/07/25 19:55:37  bert
 * Fix pct_T calculation by taking into account a possibly non-zero histogram floor
 *
 * Revision 1.14.2.3  2005/03/16 19:02:52  bert
 * Port changes from 2.0 branch
 *
 * Revision 1.14.2.2  2004/10/18 15:02:13  bert
 * Ported AJanke's biModalT fix to 1.X branch
 *
 * Revision 1.14.2.1  2004/09/28 20:03:40  bert
 * Minor portability changes for Windows
 *
 * Revision 1.14  2003/09/05 18:29:40  bert
 * Avoid passing NULL to fprintf when no mask file is specified, to avoid seg. faults reported by Richard Boyes.
 *
 * Revision 1.13  2003/08/20 05:52:55  rotor
 * * INDENTATION changes only (merging my and peter neelins code!)
 *
 * Revision 1.12  2003/08/20 05:45:10  rotor
 * * Fixed broken calculation of Median value from histogram.
 *
 * Revision 1.11  2002/09/05 00:41:57  rotor
 * ----------------------------------------------------------------------
 * Fixed clash of C/L arguments in mincstats (-max and -max_bins)
 *    -max_bins has now been changed to -int_max_bins
 *
 * Committing in .
 *
 * Modified Files:
 *  mincstats.c
 * ----------------------------------------------------------------------
 *
 * Revision 1.10  2002/04/08 21:46:34  jgsled
 * fixed problem where mincstats segmentation fault when trying to close a NULL file pointer
 *
 * Revision 1.9  2002/01/09 13:23:16  neelin
 * Removed extraneous newline for histogram output with -quiet turned on.
 *
 * Revision 1.8  2001/12/11 14:36:00  neelin
 * Added -discrete_histogram and -integer_histogram, as well as
 * -world_only options.
 *
 * Revision 1.7  2001/12/10 14:11:45  neelin
 * Obtained speed improvement by only doing CoM summing when needed.
 *
 * Revision 1.6  2001/12/06 21:54:25  neelin
 * Check for -quiet when printing volume and mask ranges.
 *
 * Revision 1.5  2001/12/06 21:48:16  neelin
 * Significant modifications to get mincstats working. Also added support
 * for multiple ranges in the volume and the mask. Added -binvalue and
 * -maskbinvalue options.
 *
 * Revision 1.4  2001/12/05 17:20:13  neelin
 * Lots of fixes to get it working. Also fixed up centre of mass calculation
 * and display.
 *
 * Revision 1.2  2001/11/28 21:59:39  neelin
 * Significant modifications. Removed dependencies on volume_io.
 * Added support for centre-of-mass calculation.
 * Compiles but crashes under linux.
 *
 * Revision 1.1  2001/11/28 21:54:08  neelin
 * *** empty log message ***
 *
 *
 * Thu Feb  1 17:16:21 EST 2001 - completed filename checking and other 
 *                                   mundane stuff - first release 1.0
 * Wed Jan 31 14:33:30 EST 2001 - finished -entropy, -median and -histogram
 * Fri Jan 19 15:25:44 EST 2001 - created first version from minccount as a 
 *                                   mirror of Alex Zijdenbos + John Sleds 
 *                                   volume_stats proggy with less memory 
 *                                   overhead
 * Original version - 1999 sometime..
 *
 * A few notes on the stats in here.
 * Median   - This is a "histogram median" based upon calculating 
 *               the volume of histogram above and below the median
 *               Thus the more bins the more accurate the approximation
 * Majority - This is the centre of the largest bin in the histogram
 * BiModalT - The Bi-Modal Threshold calculated using the method described in
 *               Otsu N, "A Threshold Selection Method from Grey-level Histograms"
 *               IEEE Trans on Systems, Man and Cybernetics. 1979, 9:1;62-66.
 * Entropy  - This is what is called "Shannon Entropy" of a histogram
 *               H(x) = - Sum(P(i) * log2(P(i))
 *               Where P(i) is the bin probability
 * PctT     - The threshold needed for a particular "Critical percentage" of
 *               of a histogram.
 */

#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#if HAVE_UNISTD_H
#include <unistd.h>
#endif /* HAVE_UNISTD_H */
#include <limits.h>
#if HAVE_FLOAT_H
#include <float.h>
#endif /* HAVE_FLOAT_H */
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <ParseArgv.h>
#include <voxel_loop.h>

#ifndef TRUE
#  define TRUE  1
#  define FALSE 0
#endif

#define SQR(x)    ((x)*(x))
#define WORLD_NDIMS 3
#define DEFAULT_BOOLEAN (-1)
#define BINS_DEFAULT 2000

/* Double_Array structure */
typedef struct {
   int      numvalues;
   double  *values;
} Double_Array;

/* Stats structure */
typedef struct {
   double   vol_range[2];
   double   mask_range[2];
   float   *histogram;
   double   hvoxels;
   double   vvoxels;
   double   volume;
   double   vol_per;
   double   hist_per;
   double   min;
   double   max;
   double   sum;
   double   sum2;
   double   mean;
   double   variance;
   double   stddev;
   double   voxel_com_sum[WORLD_NDIMS];
   double   voxel_com[WORLD_NDIMS];
   double   world_com[WORLD_NDIMS];
   double   median;
   double   majority;
   double   biModalT;
   double   pct_T;
   double   entropy;
} Stats_Info;

/* Function prototypes */
void     do_math(void *caller_data, long num_voxels, int input_num_buffers,
                 int input_vector_length, double *input_data[], int output_num_buffers,
                 int output_vector_length, double *output_data[], Loop_Info * loop_info);
void     do_stats(double value, long index[], Stats_Info * stats);
void     print_result(char *title, double result);
long     get_minc_nvoxels(int mincid);
double   get_minc_voxel_volume(int mincid);
void     get_minc_attribute(int mincid, char *varname, char *attname,
                            int maxvals, double vals[]);
int      get_minc_ndims(int mincid);
void     find_minc_spatial_dims(int mincid, int space_to_dim[], int dim_to_space[]);
void     get_minc_voxel_to_world(int mincid,
                                 double voxel_to_world[WORLD_NDIMS][WORLD_NDIMS + 1]);
void     normalize_vector(double vector[]);
void     transform_coord(double out_coord[],
                         double transform[WORLD_NDIMS][WORLD_NDIMS + 1],
                         double in_coord[]);
void     print_com(Stats_Info * stats);
int      get_double_list(char *dst, char *key, char *nextarg);
void     verify_range_options(Double_Array * min, Double_Array * max,
                              Double_Array * range, Double_Array * binvalue);
void     init_stats(Stats_Info * stats, int hist_bins);
void     free_stats(Stats_Info * stats);

/* Argument variables */
int      max_buffer_size_in_kb = 4 * 1024;

static int verbose = FALSE;
static int quiet = FALSE;
static int clobber = FALSE;
static int ignoreNaN = DEFAULT_BOOLEAN;
static double fillvalue = -DBL_MAX;

static int All = FALSE;
static int Vol_Count = FALSE;
static int Vol_Per = FALSE;
static int Vol = FALSE;
static int Min = FALSE;
static int Max = FALSE;
static int Sum = FALSE;
static int Sum2 = FALSE;
static int Mean = FALSE;
static int Variance = FALSE;
static int Stddev = FALSE;
static int CoM = FALSE;
static int World_Only = FALSE;

static int Hist = FALSE;
static int Hist_Count = FALSE;
static int Hist_Per = FALSE;
static int Median = FALSE;
static int Majority = FALSE;
static int BiModalT = FALSE;
static int PctT = FALSE;
static double pctT = 0.0;
static int Entropy = FALSE;

/* Alternative methods of calculating the bimodal threshold */
#define BMT_OTSU 1              /* Otsu algorithm (default) */
#define BMT_KITTLER 2           /* Kittler-Illingworth algorithm */
#define BMT_KAPUR 3             /* Kapur et al. algorithm */
#define BMT_SIMPLE 4      /* Simple mean-of-means, citation unknown */
static int BMTMethod = BMT_OTSU;

static Double_Array vol_min = { 0, NULL };
static Double_Array vol_max = { 0, NULL };
static Double_Array vol_range = { 0, NULL };
static Double_Array vol_binvalue = { 0, NULL };
static int num_ranges;

char    *mask_file;
static Double_Array mask_min = { 0, NULL };
static Double_Array mask_max = { 0, NULL };
static Double_Array mask_range = { 0, NULL };
static Double_Array mask_binvalue = { 0, NULL };
static int num_masks;

char    *hist_file;
static int hist_bins = BINS_DEFAULT;
static double hist_sep;
static double hist_range[2] = { -DBL_MAX, DBL_MAX };
static int discrete_histogram = FALSE;
static int integer_histogram = FALSE;
static int max_bins = 65536;

/* Global Variables to store info for stats */
Stats_Info **stats_info = NULL;
double   voxel_volume;
double   nvoxels;
int      space_to_dim[WORLD_NDIMS] = { -1, -1, -1 };
int      dim_to_space[MAX_VAR_DIMS];
int      file_ndims = 0;

/* Argument table */
ArgvInfo argTable[] = {
   {NULL, ARGV_HELP, (char *)NULL, (char *)NULL, "General options:"},
   {"-verbose", ARGV_CONSTANT, (char *)TRUE, (char *)&verbose,
    "Print out extra information."},
   {"-quiet", ARGV_CONSTANT, (char *)TRUE, (char *)&quiet,
    "Print requested values only."},
   {"-clobber", ARGV_CONSTANT, (char *)TRUE, (char *)&clobber,
    "Clobber existing files."},
   {"-noclobber", ARGV_CONSTANT, (char *)FALSE, (char *)&clobber,
    "Do not clobber existing files (default)."},
   {"-max_buffer_size_in_kb",
    ARGV_INT, (char *)1, (char *)&max_buffer_size_in_kb,
    "maximum size of internal buffers."},

   {NULL, ARGV_HELP, (char *)NULL, (char *)NULL, "\nVoxel selection options:"},
   {"-floor", ARGV_FUNC, (char *)get_double_list, (char *)&vol_min,
    "Ignore voxels below this value (list)"},
   {"-ceil", ARGV_FUNC, (char *)get_double_list, (char *)&vol_max,
    "Ignore voxels above this value (list)"},
   {"-range", ARGV_FUNC, (char *)get_double_list, (char *)&vol_range,
    "Ignore voxels outside this range (list)"},
   {"-binvalue", ARGV_FUNC, (char *)get_double_list, (char *)&vol_binvalue,
    "Include voxels within 0.5 of this value (list)"},
   {"-mask", ARGV_STRING, (char *)1, (char *)&mask_file,
    "<mask.mnc> Use mask file for calculations."},
   {"-mask_floor", ARGV_FUNC, (char *)get_double_list, (char *)&mask_min,
    "Exclude mask voxels below this value (list)"},
   {"-mask_ceil", ARGV_FUNC, (char *)get_double_list, (char *)&mask_max,
    "Exclude mask voxels above this value (list)"},
   {"-mask_range", ARGV_FUNC, (char *)get_double_list, (char *)&mask_range,
    "Exclude voxels outside this range (list)"},
   {"-mask_binvalue", ARGV_FUNC, (char *)get_double_list, (char *)&mask_binvalue,
    "Include mask voxels within 0.5 of this value (list)"},
   {"-ignore_nan", ARGV_CONSTANT, (char *)TRUE, (char *)&ignoreNaN,
    "Exclude NaN values from stats (default)."},
   {"-include_nan", ARGV_CONSTANT, (char *)FALSE, (char *)&ignoreNaN,
    "Treat NaN values as zero."},
   {"-replace_nan", ARGV_FLOAT, (char *)1, (char *)&fillvalue,
    "Replace NaNs with specified value."},

   {NULL, ARGV_HELP, (char *)NULL, (char *)NULL, "\nHistogram Options:"},
   {"-histogram", ARGV_STRING, (char *)1, (char *)&hist_file,
    "<hist_file> Compute histogram."},
   {"-hist_bins", ARGV_INT, (char *)1, (char *)&hist_bins,
    "<number> of bins in each histogram."},
   {"-bins", ARGV_INT, (char *)1, (char *)&hist_bins,
    "synonym for -hist_bins."},
   {"-hist_floor", ARGV_FLOAT, (char *)1, (char *)&hist_range[0],
    "Histogram floor value. (incl)"},
   {"-hist_ceil", ARGV_FLOAT, (char *)1, (char *)&hist_range[1],
    "Histogram ceiling value. (incl)"},
   {"-hist_range", ARGV_FLOAT, (char *)2, (char *)&hist_range,
    "Histogram floor and ceiling. (incl)"},
   {"-discrete_histogram", ARGV_CONSTANT, (char *)TRUE, (char *)&discrete_histogram,
    "Match histogram bins to data discretization"},
   {"-integer_histogram", ARGV_CONSTANT, (char *)TRUE, (char *)&integer_histogram,
    "Set histogram bins to unit width"},
   {"-int_max_bins", ARGV_INT, (char *)1, (char *)&max_bins,
    "Set maximum number of histogram bins for integer histograms"},

   {NULL, ARGV_HELP, (char *)NULL, (char *)NULL, "\nStatistics (Printed in this order)"},
   {"-all", ARGV_CONSTANT, (char *)TRUE, (char *)&All,
    "all statistics (default)."},
   {"-none", ARGV_CONSTANT, (char *)TRUE, (char *)&Vol_Count,
    "synonym for -count. (from volume_stats)"},
   {"-count", ARGV_CONSTANT, (char *)TRUE, (char *)&Vol_Count,
    "# of voxels."},
   {"-percent", ARGV_CONSTANT, (char *)TRUE, (char *)&Vol_Per,
    "percentage of valid voxels."},
   {"-volume", ARGV_CONSTANT, (char *)TRUE, (char *)&Vol,
    "volume (in mm3)."},
   {"-min", ARGV_CONSTANT, (char *)TRUE, (char *)&Min,
    "minimum value."},
   {"-max", ARGV_CONSTANT, (char *)TRUE, (char *)&Max,
    "maximum value."},
   {"-sum", ARGV_CONSTANT, (char *)TRUE, (char *)&Sum,
    "sum."},
   {"-sum2", ARGV_CONSTANT, (char *)TRUE, (char *)&Sum2,
    "sum of squares."},
   {"-mean", ARGV_CONSTANT, (char *)TRUE, (char *)&Mean,
    "mean value."},
   {"-variance", ARGV_CONSTANT, (char *)TRUE, (char *)&Variance,
    "variance."},
   {"-stddev", ARGV_CONSTANT, (char *)TRUE, (char *)&Stddev,
    "standard deviation."},
   {"-CoM", ARGV_CONSTANT, (char *)TRUE, (char *)&CoM,
    "centre of mass of the volume."},
   {"-com", ARGV_CONSTANT, (char *)TRUE, (char *)&CoM,
    "centre of mass of the volume."},
   {"-world_only", ARGV_CONSTANT, (char *)TRUE, (char *)&World_Only,
    "print CoM in world coords only."},

   {NULL, ARGV_HELP, (char *)NULL, (char *)NULL, "\nHistogram Dependant Statistics:"},
   {"-hist_count", ARGV_CONSTANT, (char *)TRUE, (char *)&Hist_Count,
    "# of voxels portrayed in Histogram."},
   {"-hist_percent",
    ARGV_CONSTANT, (char *)TRUE, (char *)&Hist_Per,
    "percentage of histogram voxels."},
   {"-median", ARGV_CONSTANT, (char *)TRUE, (char *)&Median,
    "median value."},
   {"-majority", ARGV_CONSTANT, (char *)TRUE, (char *)&Majority,
    "most frequently occurring histogram bin."},
   {"-biModalT", ARGV_CONSTANT, (char *)TRUE, (char *)&BiModalT,
    "value separating a volume into 2 classes."},
   {"-pctT", ARGV_FLOAT, (char *)1, (char *)&pctT,
    "<%> threshold at the supplied % of data."},
   {"-entropy", ARGV_CONSTANT, (char *)TRUE, (char *)&Entropy,
    "entropy of the volume."},
   {"-otsu", ARGV_CONSTANT, (char *)BMT_OTSU, (char *)&BMTMethod,
    "Use Otsu '97 algorithm for bimodal threshold (default)"},
   {"-kittler", ARGV_CONSTANT, (char *)BMT_KITTLER, (char *)&BMTMethod,
    "Use Kittler&Illingworth '86 algorithm for bimodal threshold"},
   {"-kapur", ARGV_CONSTANT, (char *)BMT_KAPUR, (char *)&BMTMethod,
    "Use Kapur et al. '85 algorithm for bimodal threshold"},
   {"-simple", ARGV_CONSTANT, (char *)BMT_SIMPLE, (char *)&BMTMethod,
    "Use simple mean-of-means algorithm for bimodal threshold"},

   {NULL, ARGV_HELP, NULL, NULL, ""},
   {NULL, ARGV_END, NULL, NULL, NULL}
};

/* Alternative thresholding algorithm.  This is more computationally
 * expensive than some of the alternatives, and doesn't seem to do a 
 * great job.  On the other hand it doesn't seem to fail like the 
 * current algorithm.
 */

static double
simple_threshold(float *histogram, float *hist_centre, int hist_bins)
{
    double sum1, sum2;
    double mean1, mean2;
    double testthreshold;
    double newthreshold;
    int newthreshold_bin;
    double count1, count2;
    int c;

    /* Start with a guess of the bimodal threshold.
     */
    newthreshold = ceil(hist_centre[hist_bins / 2]);
    newthreshold_bin = hist_bins / 2;

    for (;;) {
        sum1 = 0.0;
        sum2 = 0.0;
        count1 = 0.0;
        count2 = 0.0;

        /* Calculate the mean of the bins on each side of the
         * proposed threshold.
         */
        for (c = 0; c < newthreshold_bin; c++) {
            sum1 += (hist_centre[c] * histogram[c]);
            count1 += histogram[c];
        }

        for (c = newthreshold_bin; c < hist_bins; c++) {
            sum2 += (hist_centre[c] * histogram[c]);
            count2 += histogram[c];
        }

        /* Avoid divide by zero 
         */
        if (count1 == 0.0 || count2 == 0.0) {
            continue;
        }

        mean1 = sum1 / count1;
        mean2 = sum2 / count2;

        /* The new threshold is the mean of the means.
         */
        testthreshold = ceil((mean1 + mean2) / 2);

        /* If the threshold is unchanged, that is our final
         * guess.
         */
        if (newthreshold == testthreshold) {
            break;              /* Return result */
        }
        else {
            /* Adopt the new guess and try again until we converge.
             */
            newthreshold = testthreshold;

            for (c = 0; c < hist_bins; c++) {
                if (newthreshold == ceil(hist_centre[c])) {
                    newthreshold_bin = c;
                    break;
                }
            }
        }
    }
    return (newthreshold);
}

/** This copyright applies to the following functions: 
 *
 * otsu_threshold()
 * kittler_threshold()
 * kapur_threshold()
 * 
 * These functions were extracted from the "xite" package from this
 * source.  The functions were extensively modified, however, by me
 * to generalize the functions for our purposes.  Any bugs are
 * therefore my responsibility (bert 2004-12-14).
 * 
 * Copyright 1990, Blab, UiO
 * Image processing lab, Department of Informatics
 * University of Oslo
 * E-mail: blab@ifi.uio.no
 *________________________________________________________________
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation for any purpose and without fee is hereby
 * granted, provided that this copyright notice appear in all copies
 * and that both that copyright notice and this permission notice
 * appear in supporting documentation and that the name of B-lab,
 * Department of Informatics or University of Oslo not be used in
 * advertising or publicity pertaining to distribution of the software
 * without specific, written prior permission.
 *
 * B-LAB DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
 * NO EVENT SHALL B-LAB BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
 * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

/* Otsu, N. "A threshold selection method from gray-level histograms",
 * IEEE Transactions on Systems, Man, and Cybernetics, vol T-SMC 9,
 * No 1, pp 62-66, 1979.
 */
static double
otsu_threshold(float histo[], float hist_centre[], int hist_bins)
{
    double threshold;
    double criterion;
    double expr_1;              /* Temporary for common subexpression */
    int i, k;                   /* Generic loop counters */
    double *p = malloc(hist_bins * sizeof(double));
    double omega_k;
    double sigma_b_k;
    double sigma_T;
    double mu_T;
    double mu_k;
    int sum;
    int k_low, k_high;
    double mu_0, mu_1, mu;

    /* If memory allocation fails, abandon ship!!! */
    if (p == NULL) {
        return (0.0);
    }

    sum = 0;
    for (i = 0; i < hist_bins; i++)
        sum += histo[i];

    for (i = 0; i < hist_bins; i++)
        p[i] = histo[i] * 1.0 / sum;

    mu_T = 0.0;
    for (i = 0; i < hist_bins; i++)
        mu_T += hist_centre[i] * p[i];

    sigma_T = 0.0;
    for (i = 0; i < hist_bins; i++)
        sigma_T += (hist_centre[i] - mu_T) * (hist_centre[i] - mu_T) * p[i];

    /* Ignore outlying zero bins */
    for (k_low = 0; (p[k_low] == 0) && (k_low < hist_bins - 1); k_low++)
        ;

    for (k_high = hist_bins - 1; (p[k_high] == 0) && (k_high > 0); k_high--)
        ;

    criterion = 0.0;
    threshold = hist_centre[hist_bins / 2];
    mu_0 = hist_centre[hist_bins / 2 - 1];
    mu_1 = hist_centre[hist_bins / 2 + 1];

    omega_k = 0.0;
    mu_k = 0.0;
    for (k = k_low; k <= k_high ; k++) {
        omega_k += p[k];
        mu_k += hist_centre[k] * p[k];

        expr_1 = (mu_T * omega_k - mu_k);
        sigma_b_k = expr_1 * expr_1 / (omega_k * (1 - omega_k));
        if (criterion < sigma_b_k / sigma_T) {
            criterion = sigma_b_k / sigma_T;
            threshold = hist_centre[k];
            mu_0 = mu_k / omega_k;
            mu_1 = (mu_T - mu_k) / (1.0 - omega_k);
        }
    }
    mu = mu_T;
    free(p);
    return threshold;
}

/* Kittler, J. & Illingworth J., "Minimum error thresholding", Pattern
 * Recognition, vol 19, pp 41-47, 1986.
 */
static double 
kittler_threshold (float hist_bin[], float hist_centre[], int hist_size)
{
    double threshold;
    double criterion;
    int g;
    double n;
    int T_low, T_high;
    double P_1_T, P_2_T, P_tot;
    double mu_1_T, mu_2_T;
    double sum_gh_1, sum_gh_2, sum_gh_tot;
    double sum_ggh_1, sum_ggh_2, sum_ggh_tot;
    double sigma_1_T, sigma_2_T;
    double J_T;
    double mu, mu_1, mu_2;

    criterion = 1e10;
    threshold = hist_centre[hist_size / 2 + 1];
    J_T = criterion;

    T_low = 0;
    while ((hist_bin[T_low] == 0) && (T_low < hist_size - 1)) {
        T_low++;
    }

    T_high = hist_size - 1;
    while ((hist_bin[T_high] == 0) && (T_high > 0)) {
        T_high--;
    }

    n = 0;
    for (g = T_low; g <= T_high; g++) {
        n += hist_bin[g];
    }

    P_1_T = hist_bin[T_low];

    P_tot = 0;
    for (g = T_low; g <= T_high; g++) {
        P_tot += hist_bin[g];
    }

    sum_gh_1 = hist_centre[T_low] * hist_bin[T_low];

    sum_gh_tot = 0.0;
    for (g = T_low; g <= T_high; g++) {
        sum_gh_tot += hist_centre[g] * hist_bin[g];
    }

    mu = sum_gh_tot * 1.0 / n;

    sum_ggh_1 = hist_centre[T_low] * hist_centre[T_low] * hist_bin[T_low];

    sum_ggh_tot = 0.0;
    for (g = T_low; g <= T_high; g++) {
        sum_ggh_tot += hist_centre[g] * hist_centre[g] * hist_bin[g];
    }

    for (g = T_low + 1; g < T_high - 1; g++) {
        P_1_T += hist_bin[g];
        P_2_T = P_tot - P_1_T;

        sum_gh_1 += hist_centre[g] * hist_bin[g];
        sum_gh_2 = sum_gh_tot - sum_gh_1;

        mu_1_T = sum_gh_1 / P_1_T;
        mu_2_T = sum_gh_2 / P_2_T;

        sum_ggh_1 += hist_centre[g] * hist_centre[g] * hist_bin[g];
        sum_ggh_2 = sum_ggh_tot - sum_ggh_1;

        sigma_1_T = sum_ggh_1 / P_1_T - mu_1_T * mu_1_T;
        sigma_2_T = sum_ggh_2 / P_2_T - mu_2_T * mu_2_T;

        /* Equation (15) in the article */
        if ((sigma_1_T != 0.0) && (P_1_T != 0) &&
            (sigma_2_T != 0.0) && (P_2_T != 0)) {
            J_T = 1 + 2 * (P_1_T * log(sigma_1_T) + P_2_T * log(sigma_2_T))
                - 2 * (P_1_T * log(P_1_T) + P_2_T * log(P_2_T) );
        }

        if (criterion > J_T) {
            criterion = J_T;
            threshold = hist_centre[g];
            mu_1 = mu_1_T;
            mu_2 = mu_2_T;
        }
    }
    return threshold;
}

/*
  Kapur, Sahoo & Wong "A new method for Gray-level picture
  thresholding using the entropy of the histogram", Computer Vision,
  Graphics, and Image Processing, vol 29, pp 273-285, 1985.
*/

#define BIN_TINY 1e-6

static double
kapur_threshold(float histo[], float hist_centre[], int hist_bins)
{
    double threshold;
    double Phi, Phi_max;
    int i, k;
    double *p = malloc(sizeof(double) * hist_bins);
    double *P = malloc(sizeof(double) * hist_bins);
    double *H = malloc(sizeof(double) * hist_bins);
    double sum;

    sum = 0;
    for (i = 0; i < hist_bins; i++) {
        sum += histo[i];
    }

    for (i = 0; i < hist_bins; i++) {
        p[i] = histo[i] * 1.0 / sum;
    }
   
    P[0] = p[0];
    for (i = 1; i < hist_bins; i++) {
        P[i] = P[i - 1] + p[i];
    }

    if (histo[0] == 0) {
        H[0] = 0;
    }
    else {
        H[0] = -p[0] * log(p[0]);
    }

    for (i = 1; i < hist_bins; i++) {
        if (histo[i] == 0) {
            H[i] = H[i - 1];
        }
        else {
            H[i] = H[i - 1] - p[i] * log(p[i]);
        }
    }

    Phi_max = -10e10;
    threshold = hist_centre[hist_bins / 2];

    for (k = 0; k <= hist_bins - 1; k++) {

        if ((P[k] > BIN_TINY) && (1 - P[k] > BIN_TINY)) {
            Phi = log(P[k] * (1 - P[k]))
                + H[k] / P[k]
                + (H[hist_bins - 1] - H[k]) / (1.0 - P[k]);

            if (Phi_max < Phi) {	
                Phi_max = Phi;
                threshold = hist_centre[k];
            }
        }
    }
    free(p);
    free(P);
    free(H);
    return threshold;
}

int main(int argc, char *argv[])
{
   char   **infiles;
   int      nfiles;
   Loop_Options *loop_options;
   int      mincid, imgid;
   int      idim;
   int      irange, imask;
   double   real_range[2], valid_range[2];
   nc_type  datatype;
   int      is_signed;
   double   voxel_to_world[WORLD_NDIMS][WORLD_NDIMS + 1];
   Stats_Info *stats;
   FILE    *FP;
   double   scale, voxmin, voxmax;

   /* Get arguments */
   if(ParseArgv(&argc, argv, argTable, 0) || (argc != 2)) {
      (void)fprintf(stderr, "\nUsage: %s [options] <infile.mnc>\n", argv[0]);
      (void)fprintf(stderr, "       %s -help\n\n", argv[0]);
      exit(EXIT_FAILURE);
   }
   nfiles = argc - 1;
   infiles = &argv[1];
   infiles[1] = &mask_file[0];

   if(infiles[1] != NULL) {
      nfiles++;
   }

   /* Check for NaN options */
   if(ignoreNaN == DEFAULT_BOOLEAN) {
      ignoreNaN = (fillvalue != -DBL_MAX);
   }
   if(ignoreNaN && fillvalue == -DBL_MAX) {
      fillvalue = 0.0;
   }

   /* Check range options: not over-specified and put values 
      in vol_min/vol_max */
   verify_range_options(&vol_min, &vol_max, &vol_range, &vol_binvalue);
   num_ranges = vol_min.numvalues;

   /* Check mask range options: not over-specified and put values 
      in mask_min/mask_max */
   verify_range_options(&mask_min, &mask_max, &mask_range, &mask_binvalue);
   num_masks = mask_min.numvalues;

   if (mask_file != NULL && num_masks == 1 && 
       *mask_min.values == -DBL_MAX && *mask_max.values == DBL_MAX) {
       fprintf(stderr, 
               "%s: Warning: Mask specified without a range. Mask will be ignored.\n",
               argv[0]);
   }

   /* Check histogramming options */
   if((discrete_histogram && integer_histogram) ||
      ((discrete_histogram || integer_histogram) && (hist_bins != BINS_DEFAULT))) {
      (void)fprintf(stderr,
                    "Please specify only -discrete_histogram, -integer_histogram or -bins\n");
      exit(EXIT_FAILURE);
   }

   /* init PctT boolean before checking */
   if(pctT > 0.0) {
      PctT = TRUE;
      pctT /= 100;
   }

   /* if nothing selected, do everything */
   if(!Vol_Count && !Vol_Per && !Vol && !Min && !Max && !Sum && !Sum2 &&
      !Mean && !Variance && !Stddev && !Hist_Count && !Hist_Per &&
      !Median && !Majority && !BiModalT && !PctT && !Entropy && !CoM) {
      All = TRUE;
      Hist = TRUE;
   }

   if((hist_file != NULL) || Hist_Count || Hist_Per ||
      Median || Majority || BiModalT || PctT || Entropy) {
      Hist = TRUE;
   }
   if(hist_bins <= 0)
      Hist = FALSE;

   /* do checking on arguments */
   if(hist_bins < 1) {
      (void)fprintf(stderr, "%s: Must have one or more bins for a histogram\n", argv[0]);
      exit(EXIT_FAILURE);
   }

   if(access(infiles[0], 0) != 0) {
      (void)fprintf(stderr, "%s: Couldn't find %s\n", argv[0], infiles[0]);
      exit(EXIT_FAILURE);
   }

   if(infiles[1] != NULL && access(infiles[1], 0) != 0) {
      (void)fprintf(stderr, "%s: Couldn't find mask file: %s\n", argv[0], infiles[1]);
      exit(EXIT_FAILURE);
   }

   if(hist_file != NULL && !clobber && access(hist_file, 0) != -1) {
      (void)fprintf(stderr, "%s: Histogram %s exists! (use -clobber to overwrite)\n",
                    argv[0], hist_file);
      exit(EXIT_FAILURE);
   }

   /* Open the file to get some information */
   mincid = miopen(infiles[0], NC_NOWRITE);
   imgid = ncvarid(mincid, MIimage);
   nvoxels = get_minc_nvoxels(mincid);
   voxel_volume = get_minc_voxel_volume(mincid);
   (void)miget_datatype(mincid, imgid, &datatype, &is_signed);
   (void)miget_image_range(mincid, real_range);
   (void)miget_valid_range(mincid, imgid, valid_range);
   file_ndims = get_minc_ndims(mincid);
   find_minc_spatial_dims(mincid, space_to_dim, dim_to_space);
   get_minc_voxel_to_world(mincid, voxel_to_world);

   /* Check whether discrete histogramming makes sense - i.e. not
      floating-point. Silently ignore the option if it does not make sense. */
   if(datatype == NC_FLOAT || datatype == NC_DOUBLE) {
      discrete_histogram = FALSE;
   }

   /* set up the histogram definition, if needed */
   if(Hist) {
      if(hist_range[0] == -DBL_MAX) {
         if(vol_min.numvalues == 1 && vol_min.values[0] != -DBL_MAX)
            hist_range[0] = vol_min.values[0];
         else
            hist_range[0] = real_range[0];
      }

      if(hist_range[1] == DBL_MAX) {
         if(vol_max.numvalues == 1 && vol_max.values[0] != DBL_MAX)
            hist_range[1] = vol_max.values[0];
         else
            hist_range[1] = real_range[1];
      }

      if(discrete_histogram) {

         /* Convert histogram range to voxel values and round, then
            convert back. */
         scale = (real_range[1] == real_range[0]) ? 0.0 :
            (valid_range[1] - valid_range[0]) / (real_range[1] - real_range[0]);
         voxmin = rint((hist_range[0] - real_range[0]) * scale + valid_range[0]);
         voxmax = rint((hist_range[1] - real_range[0]) * scale + valid_range[0]);
         if(real_range[1] != real_range[0])
            scale = 1.0 / scale;
         hist_range[0] = (voxmin - valid_range[0]) * scale + real_range[0];
         hist_range[1] = (voxmax - valid_range[0]) * scale + real_range[0];

         /* Figure out number of bins and bin width */
         hist_bins = voxmax - voxmin;
         if(hist_bins <= 0) {
            hist_sep = 1.0;
            hist_bins = 0;
         }
         else {
            hist_sep = (hist_range[1] - hist_range[0]) / hist_bins;
         }

         /* Shift the ends of the histogram down and up by half a bin
            and add one to the number of bins */
         hist_range[0] -= hist_sep / 2.0;
         hist_range[1] += hist_sep / 2.0;
         hist_bins++;
      }
      else if(integer_histogram) {

         /* Add and subtract the 0.01 in order to ensure that a range that
            is already properly specified stays that way. Ie. [-0.5,255.5]
            does not change, regardless of the type of rounding done to .5 */
         hist_range[0] = (int)rint(hist_range[0] + 0.01);
         hist_range[1] = (int)rint(hist_range[1] - 0.01);
         hist_bins = hist_range[1] - hist_range[0] + 1.0;
         hist_range[0] -= 0.5;
         hist_range[1] += 0.5;
         hist_sep = 1.0;
      }
      else {
         hist_sep = (hist_range[1] - hist_range[0]) / hist_bins;
      }

      if((discrete_histogram || integer_histogram) && (hist_bins > max_bins)) {
         (void)fprintf(stderr,
                       "Too many bins in histogram (%d) - please increase -int_max_bins if appropriate\n",
                       hist_bins);
         exit(EXIT_FAILURE);
      }

   }

   /* Initialize the stats structure */
   stats_info = malloc(num_ranges * sizeof(*stats_info));
   for(irange = 0; irange < num_ranges; irange++) {
      stats_info[irange] = malloc(num_masks * sizeof(**stats_info));
      for(imask = 0; imask < num_masks; imask++) {
         stats = &stats_info[irange][imask];
         init_stats(stats, hist_bins);
         stats->vol_range[0] = vol_min.values[irange];
         stats->vol_range[1] = vol_max.values[irange];
         stats->mask_range[0] = mask_min.values[imask];
         stats->mask_range[1] = mask_max.values[imask];
      }
   }

   /* Do math */
   loop_options = create_loop_options();
   set_loop_first_input_mincid(loop_options, mincid);
   set_loop_verbose(loop_options, verbose);
   set_loop_buffer_size(loop_options, (long)1024 * max_buffer_size_in_kb);
   voxel_loop(nfiles, infiles, 0, NULL, NULL, loop_options, do_math, NULL);
   free_loop_options(loop_options);

   /* Open the histogram file if it will be needed */
   if(hist_file == NULL) {
      FP = NULL;
   }
   else {
      FP = fopen(hist_file, "w");
      if(FP == NULL) {
         perror("Error opening histogram file");
         exit(EXIT_FAILURE);
      }
   }

   /* Loop over ranges and masks, calculating results */
   for(irange = 0; irange < num_ranges; irange++) {
      for(imask = 0; imask < num_masks; imask++) {

         stats = &stats_info[irange][imask];

         stats->vol_per = stats->vvoxels / nvoxels * 100;
         stats->hist_per = stats->hvoxels / nvoxels * 100;
         stats->mean = (stats->vvoxels > 0) ? stats->sum / stats->vvoxels : 0.0;
         stats->variance =
            (stats->vvoxels > 1) ?
            (stats->sum2 - SQR(stats->sum) / stats->vvoxels) / (stats->vvoxels - 1)
            : 0.0;
         stats->stddev = sqrt(stats->variance);
         stats->volume = voxel_volume * stats->vvoxels;
         for(idim = 0; idim < WORLD_NDIMS; idim++) {
            if(stats->sum != 0.0)
               stats->voxel_com[idim] = stats->voxel_com_sum[idim] / stats->sum;
            else
               stats->voxel_com[idim] = 0.0;
         }
         transform_coord(stats->world_com, voxel_to_world, stats->voxel_com);

         /* Do the histogram calculations */
         if(Hist) {
            int      c;
            float   *hist_centre;
            float   *pdf;              /* probability density Function */
            float   *cdf;              /* cumulative density Function  */

            int      majority_bin = 0;
            int      median_bin = 0;
            int      pctt_bin = 0;
            int      bimodalt_bin = 0;

            /* BiModal Threshold variables */
            double   zero_moment = 0.0;
            double   first_moment = 0.0;
            double   var = 0.0;
            double   max_var = 0.0;

            /* Allocate space for histograms */
            hist_centre = calloc(hist_bins, sizeof(float));
            pdf = calloc(hist_bins, sizeof(float));
            cdf = calloc(hist_bins, sizeof(float));
            if(hist_centre == NULL || pdf == NULL || cdf == NULL) {
               (void)fprintf(stderr, "Memory allocation error\n");
               exit(EXIT_FAILURE);
            }

            for(c = 0; c < hist_bins; c++) {
               hist_centre[c] = (c * hist_sep) + hist_range[0] + (hist_sep / 2);

               /* Probability and Cumulative density functions */
               pdf[c] = (stats->hvoxels > 0) ? stats->histogram[c] / stats->hvoxels : 0.0;
               cdf[c] = (c == 0) ? pdf[c] : cdf[c - 1] + pdf[c];

               /* Majority */
               if(stats->histogram[c] > stats->histogram[majority_bin]) {
                  majority_bin = c;
               }

               /* Entropy */
               if(stats->histogram[c] > 0.0) {
                  stats->entropy -= pdf[c] * (log(pdf[c]) / log(2.0));
               }

               /* Histogram Median */
               if(cdf[c] < 0.5) {
                  median_bin = c;
               }

               /* BiModal Threshold */
               zero_moment += pdf[c];
               first_moment += hist_centre[c] * pdf[c];

               if(c > 0 && zero_moment > 0.0 && zero_moment < 1.0) {
                  var = SQR((stats->mean * zero_moment) - first_moment) /
                     (zero_moment * (1 - zero_moment));

                  if(var > max_var) {
                     bimodalt_bin = c;
                     max_var = var;
                  }
               }

               /* pct Threshold */
               if(cdf[c] < pctT) {
                  pctt_bin = c;
               }
            }

            /* median */
            if(median_bin == 0) {
               stats->median = 0.5 * pdf[median_bin] * hist_sep;
            }
            else {
               stats->median = ((double)median_bin + (0.5 - cdf[median_bin])
                                * pdf[median_bin + 1]) * hist_sep;
            }
            stats->median += hist_centre[0];

            stats->majority = hist_centre[majority_bin];
            stats->biModalT = hist_centre[bimodalt_bin];

            /* pct Threshold */
            if(pctt_bin == 0) {
               stats->pct_T = pctT * pdf[pctt_bin] * hist_sep;
            }
            else {
               stats->pct_T = ((double)pctt_bin + (pctT - cdf[pctt_bin])
                               * pdf[pctt_bin + 1]) * hist_sep;
            }
            stats->pct_T += hist_centre[0]; /* Add histogram minimum */

            switch (BMTMethod) {
            case BMT_KITTLER:
                stats->biModalT = kittler_threshold(stats->histogram,
                                                    hist_centre,
                                                    hist_bins);
                break;

            case BMT_KAPUR:
                stats->biModalT = kapur_threshold(stats->histogram,
                                                  hist_centre,
                                                  hist_bins);
                break;

            case BMT_SIMPLE:
                stats->biModalT = simple_threshold(stats->histogram,
                                                   hist_centre,
                                                   hist_bins);
                break;

            default:
                stats->biModalT = otsu_threshold(stats->histogram,
                                                 hist_centre,
                                                 hist_bins);
                break;
            }

            /* output the histogram */
            if(hist_file != NULL) {

               (void)fprintf(FP, "# histogram for: %s\n", infiles[0]);
	       (void)fprintf(FP, "#  mask file:    %s\n", 
			     (infiles[1] != NULL) ? infiles[1] : "(null)");
               if(stats->vol_range[0] != -DBL_MAX || stats->vol_range[1] != DBL_MAX) {
                  (void)fprintf(FP, "#  volume range: %g  %g\n", stats->vol_range[0],
                                stats->vol_range[1]);
               }
               if(stats->mask_range[0] != -DBL_MAX || stats->mask_range[1] != DBL_MAX) {
                  (void)fprintf(FP, "#  mask range:   %g  %g\n", stats->mask_range[0],
                                stats->mask_range[1]);
               }
               (void)fprintf(FP, "#  domain:       %g  %g\n", hist_range[0],
                             hist_range[1]);
               (void)fprintf(FP, "#  entropy:      %g\n", stats->entropy);;
               (void)fprintf(FP, "# bin centres                 counts\n");
               for(c = 0; c < hist_bins; c++)
                  (void)fprintf(FP, "  %-20.10g  %12g\n", hist_centre[c],
                                stats->histogram[c]);
               (void)fprintf(FP, "\n");
            }

            /* Free the space */
            free(hist_centre);
            free(pdf);
            free(cdf);

         }                             /* end histogram calculations */

         /* Print range of data allowed */
         if(verbose || (num_ranges > 1 && !quiet)) {
            (void)fprintf(stdout, "Included Range:    %g   %g\n", stats->vol_range[0],
                          stats->vol_range[1]);
         }
         if(verbose || (num_masks > 1 && !quiet)) {
            (void)fprintf(stdout, "Mask Range:        %g   %g\n", stats->mask_range[0],
                          stats->mask_range[1]);
         }

         /* Print warnings about ranges */
         if(!quiet && real_range[0] != stats->min &&
            stats->vol_range[0] == -DBL_MAX && stats->mask_range[0] == -DBL_MAX) {
            (void)fprintf(stderr,
                          "*** %s - reported min (%g) doesn't equal header (%g)\n",
                          argv[0], stats->min, real_range[0]);
         }
         if(!quiet && real_range[1] != stats->max &&
            stats->vol_range[1] == DBL_MAX && stats->mask_range[1] == DBL_MAX) {
            (void)fprintf(stderr,
                          "*** %s - reported max (%g) doesn't equal header (%g)\n",
                          argv[0], stats->max, real_range[1]);
         }

         /* Output stats */
         if(Hist) {
            if(verbose) {
               (void)fprintf(stdout, "Histogram Range:   %g\t%g\n", hist_range[0],
                             hist_range[1]);
               (void)fprintf(stdout, "Histogram bins:    %i  of Width (separation): %f\n",
                             hist_bins, hist_sep);
            }
         }

         if(All && !quiet) {
            (void)fprintf(stdout, "File:              %s\n", infiles[0]);
         }
         if(All && !quiet) {
            (void)fprintf(stdout, "Mask file:         %s\n", 
			  (infiles[1] != NULL) ? infiles[1] : "(null)");
         }
         if(All && !quiet) {
            print_result("Total voxels:      ", nvoxels);
         }
         if(All || Vol_Count) {
            print_result("# voxels:          ", stats->vvoxels);
         }
         if(All || Vol_Per) {
            print_result("% of total:        ", stats->vol_per);
         }
         if(All || Vol) {
            print_result("Volume (mm3):      ", stats->volume);
         }
         if(All || Min) {
            print_result("Min:               ", stats->min);
         }
         if(All || Max) {
            print_result("Max:               ", stats->max);
         }
         if(All || Sum) {
            print_result("Sum:               ", stats->sum);
         }
         if(All || Sum2) {
            print_result("Sum^2:             ", stats->sum2);
         }
         if(All || Mean) {
            print_result("Mean:              ", stats->mean);
         }
         if(All || Variance) {
            print_result("Variance:          ", stats->variance);
         }
         if(All || Stddev) {
            print_result("Stddev:            ", stats->stddev);
         }
         if(All || CoM) {
            print_com(stats);
         }

         if(Hist) {
            if(All && !quiet) {
               (void)fprintf(stdout, "\nHistogram:         %s\n", hist_file);
            }
            if(All && !quiet) {
               print_result("Total voxels:      ", nvoxels);
            }
            if(All || Hist_Count) {
               print_result("# voxels:          ", stats->hvoxels);
            }
            if(All || Hist_Per) {
               print_result("% of total:        ", stats->hist_per);
            }
            if(All || Median) {
               print_result("Median:            ", stats->median);
            }
            if(All || Majority) {
               print_result("Majority:          ", stats->majority);
            }
            if(All || BiModalT) {
               print_result("BiModalT:          ", stats->biModalT);
            }
            if(All || PctT) {
               char     str[100];

               (void)sprintf(str, "PctT [%3d%%]:       ", (int)(pctT * 100));
               print_result(str, stats->pct_T);
            }
            if(All || Entropy) {
               print_result("Entropy :          ", stats->entropy);
            }
            if(!quiet) {
               (void)fprintf(stdout, "\n");
            }
         }

      }                                /* End of loop over masks */

   }                                   /* End of loop over ranges */

   /* Close the histogram file */
   if(FP != NULL) {
      (void)fclose(FP);
   }

   /* Free things up */
   for(irange = 0; irange < num_ranges; irange++) {
      for(imask = 0; imask < num_masks; imask++) {
         free_stats(&stats_info[irange][imask]);
      }
      free(stats_info[irange]);
   }
   free(stats_info);

   return EXIT_SUCCESS;
}

void do_math(void *caller_data, long num_voxels,
             int input_num_buffers, int input_vector_length,
             double *input_data[],
             int output_num_buffers, int output_vector_length,
             double *output_data[], Loop_Info * loop_info)
/* ARGSUSED */
{
   long     ivox;
   long     index[MAX_VAR_DIMS];
   int      imask, irange;
   double   mask_min, mask_max;
   Stats_Info *stats;

   /* Loop through the voxels - a bit of optimization in case we 
      have a brain-dead compiler */
   if(mask_file != NULL) {
      for(irange = 0; irange < num_ranges; irange++) {
         for(imask = 0; imask < num_masks; imask++) {
            stats = &stats_info[irange][imask];
            mask_min = stats->mask_range[0];
            mask_max = stats->mask_range[1];
            if(CoM || All) {
               for(ivox = 0; ivox < num_voxels * input_vector_length; ivox++) {
                  if((input_data[1][ivox] >= mask_min) &&
                     (input_data[1][ivox] <= mask_max)) {
                     get_info_voxel_index(loop_info, ivox, file_ndims, index);
                     do_stats(input_data[0][ivox], index, stats);
                  }
               }
            }
            else {
               for(ivox = 0; ivox < num_voxels * input_vector_length; ivox++) {
                  if((input_data[1][ivox] >= mask_min) &&
                     (input_data[1][ivox] <= mask_max)) {
                     do_stats(input_data[0][ivox], NULL, stats);
                  }
               }
            }
         }
      }
   }

   else {
      for(irange = 0; irange < num_ranges; irange++) {
         stats = &stats_info[irange][0];
         if(CoM || All) {
            for(ivox = 0; ivox < num_voxels * input_vector_length; ivox++) {
               get_info_voxel_index(loop_info, ivox, file_ndims, index);
               do_stats(input_data[0][ivox], index, stats);
            }
         }
         else {
            for(ivox = 0; ivox < num_voxels * input_vector_length; ivox++) {
               do_stats(input_data[0][ivox], NULL, stats);
            }
         }
      }
   }

   return;
}

void do_stats(double value, long index[], Stats_Info * stats)
{
   int      idim;
   int      hist_index, dim_index;

   /* Check for NaNs */
   if(value == -DBL_MAX) {
      if(ignoreNaN)
         value = fillvalue;
      else
         return;
   }

   /* Collect stats if we are within range */
   if((value >= stats->vol_range[0]) && (value <= stats->vol_range[1])) {
      stats->vvoxels++;
      stats->sum += value;
      stats->sum2 += SQR(value);

      if(value < stats->min) {
         stats->min = value;
      }
      if(value > stats->max) {
         stats->max = value;
      }

      /* Get voxel index */
      if(CoM || All) {
         for(idim = 0; idim < WORLD_NDIMS; idim++) {
            dim_index = space_to_dim[idim];
            if(dim_index >= 0) {
               stats->voxel_com_sum[idim] += value * index[dim_index];
            }
         }
      }

      if(Hist && (value >= hist_range[0]) && (value <= hist_range[1])) {
         /*lower limit <= value < upper limit */
         hist_index = (int)floor((value - hist_range[0]) / hist_sep);
         if(hist_index >= hist_bins) {
            hist_index = hist_bins - 1;
         }
         stats->histogram[hist_index]++;
         stats->hvoxels++;
      }
   }
}

void print_result(char *title, double result)
{
   if(!quiet) {
      (void)fprintf(stdout, "%s", title);
   }
   (void)fprintf(stdout, "%.10g\n", result);
}

/* Get the number of voxels in the file - this is the total number,
   not just spatial dimensions */
long get_minc_nvoxels(int mincid)
{
   int      imgid, dim[MAX_VAR_DIMS];
   int      idim, ndims;
   long     nvoxels, length;

   /* Get the dimension ids for the image variable */
   imgid = ncvarid(mincid, MIimage);
   (void)ncvarinq(mincid, imgid, NULL, NULL, &ndims, dim, NULL);

   /* Loop over them to get the total number of voxels */
   nvoxels = 1;
   for(idim = 0; idim < ndims; idim++) {
      (void)ncdiminq(mincid, dim[idim], NULL, &length);
      nvoxels *= length;
   }

   return nvoxels;
}

/* Get the volume of a spatial voxel */
double get_minc_voxel_volume(int mincid)
{
   int      imgid, dim[MAX_VAR_DIMS];
   int      idim, ndims;
   double   volume, step;
   char     dimname[MAX_NC_NAME];

   /* Get the dimension ids for the image variable */
   imgid = ncvarid(mincid, MIimage);
   (void)ncvarinq(mincid, imgid, NULL, NULL, &ndims, dim, NULL);

   /* Loop over them to get the total spatial volume */
   volume = 1.0;
   for(idim = 0; idim < ndims; idim++) {

      /* Get the name and check that this is a spatial dimension */
      (void)ncdiminq(mincid, dim[idim], dimname, NULL);
      if((dimname[0] == '\0') ||
         (strcmp(&dimname[1], "space") != 0) ||
         !(dimname[0] == 'x' || dimname[0] == 'y' || dimname[0] == 'z')) {
         continue;
      }

      /* Get the step attribute of the coordinate variable */
      step = 1.0;
      get_minc_attribute(mincid, dimname, MIstep, 1, &step);

      /* Make sure that it is positive and calculate the volume */
      if(step < 0.0)
         step = -step;
      volume *= step;
   }

   return volume;
}

/* Get a double attribute from a minc file */
void get_minc_attribute(int mincid, char *varname, char *attname,
                        int maxvals, double vals[])
{
   int      varid;
   int      old_ncopts;
   int      att_length;

   if(!mivar_exists(mincid, varname))
      return;
   varid = ncvarid(mincid, varname);
   old_ncopts = ncopts;
   ncopts = 0;
   (void)miattget(mincid, varid, attname, NC_DOUBLE, maxvals, vals, &att_length);
   ncopts = old_ncopts;
}

/* Get the total number of image dimensions in a minc file */
int get_minc_ndims(int mincid)
{
   int      imgid;
   int      ndims;

   imgid = ncvarid(mincid, MIimage);
   (void)ncvarinq(mincid, imgid, NULL, NULL, &ndims, NULL, NULL);

   return ndims;
}

/* Get the mapping from spatial dimension - x, y, z - to file dimensions
   and vice-versa. */
void find_minc_spatial_dims(int mincid, int space_to_dim[], int dim_to_space[])
{
   int      imgid, dim[MAX_VAR_DIMS];
   int      idim, ndims, world_index;
   char     dimname[MAX_NC_NAME];

   /* Set default values */
   for(idim = 0; idim < 3; idim++)
      space_to_dim[idim] = -1;
   for(idim = 0; idim < MAX_VAR_DIMS; idim++)
      dim_to_space[idim] = -1;

   /* Get the dimension ids for the image variable */
   imgid = ncvarid(mincid, MIimage);
   (void)ncvarinq(mincid, imgid, NULL, NULL, &ndims, dim, NULL);

   /* Loop over them to find the spatial ones */
   for(idim = 0; idim < ndims; idim++) {

      /* Get the name and check that this is a spatial dimension */
      (void)ncdiminq(mincid, dim[idim], dimname, NULL);
      if((dimname[0] == '\0') || (strcmp(&dimname[1], "space") != 0)) {
         continue;
      }

      /* Look for the spatial dimensions */
      switch (dimname[0]) {
      case 'x':
         world_index = 0;
         break;
      case 'y':
         world_index = 1;
         break;
      case 'z':
         world_index = 2;
         break;
      default:
         world_index = 0;
         break;
      }
      space_to_dim[world_index] = idim;
      dim_to_space[idim] = world_index;
   }
}

/* Get the voxel to world transform (for column vectors) */
void get_minc_voxel_to_world(int mincid,
                             double voxel_to_world[WORLD_NDIMS][WORLD_NDIMS + 1])
{
   int      idim, jdim;
   double   dircos[WORLD_NDIMS];
   double   step, start;
   char    *dimensions[] = { MIxspace, MIyspace, MIzspace };

   /* Zero the matrix */
   for(idim = 0; idim < WORLD_NDIMS; idim++) {
      for(jdim = 0; jdim < WORLD_NDIMS + 1; jdim++)
         voxel_to_world[idim][jdim] = 0.0;
   }

   for(jdim = 0; jdim < WORLD_NDIMS; jdim++) {

      /* Set default values */
      step = 1.0;
      start = 0.0;
      for(idim = 0; idim < WORLD_NDIMS; idim++)
         dircos[idim] = 0.0;
      dircos[jdim] = 1.0;

      /* Get the attributes */
      get_minc_attribute(mincid, dimensions[jdim], MIstart, 1, &start);
      get_minc_attribute(mincid, dimensions[jdim], MIstep, 1, &step);
      get_minc_attribute(mincid, dimensions[jdim], MIdirection_cosines,
                         WORLD_NDIMS, dircos);
      normalize_vector(dircos);

      /* Put them in the matrix */
      for(idim = 0; idim < WORLD_NDIMS; idim++) {
         voxel_to_world[idim][jdim] = step * dircos[idim];
         voxel_to_world[idim][WORLD_NDIMS] += start * dircos[idim];
      }

   }

}

void normalize_vector(double vector[])
{
   int      idim;
   double   magnitude;

   magnitude = 0.0;
   for(idim = 0; idim < WORLD_NDIMS; idim++) {
      magnitude += (vector[idim] * vector[idim]);
   }
   magnitude = sqrt(magnitude);
   if(magnitude > 0.0) {
      for(idim = 0; idim < WORLD_NDIMS; idim++) {
         vector[idim] /= magnitude;
      }
   }
}

/* Prints out centre of mass with correct file order */
void print_com(Stats_Info * stats)
{
   char    *spatial_codes[WORLD_NDIMS] = { "x", "y", "z" }; /* In x,y,z order */
   int      idim;
   int      first;

   /* Print out voxel coord info */
   if(!World_Only) {
      if(!quiet) {
         (void)fprintf(stdout, "CoM_voxel(");
         first = TRUE;
         for(idim = 0; idim < MAX_VAR_DIMS; idim++) {
            if(dim_to_space[idim] >= 0) {
               if(first)
                  first = FALSE;
               else
                  (void)fprintf(stdout, ",");
               (void)fprintf(stdout, "%s", spatial_codes[dim_to_space[idim]]);
            }
         }
         (void)fprintf(stdout, "):  ");
      }
      first = TRUE;
      for(idim = 0; idim < MAX_VAR_DIMS; idim++) {
         if(dim_to_space[idim] >= 0) {
            if(first)
               first = FALSE;
            else
               (void)fprintf(stdout, " ");
            (void)fprintf(stdout, "%.10g", stats->voxel_com[dim_to_space[idim]]);
         }
      }
      (void)fprintf(stdout, "\n");
   }

   /* Print out world coord info */
   if(!quiet) {
      (void)fprintf(stdout, "CoM_real(x,y,z):   ");
   }
   (void)fprintf(stdout, "%.10g %.10g %.10g\n",
                 stats->world_com[0], stats->world_com[1], stats->world_com[2]);
}

/* Transforms a coordinate through a linear transform */
void transform_coord(double out_coord[],
                     double transform[WORLD_NDIMS][WORLD_NDIMS + 1], double in_coord[])
{
   int      idim, jdim;
   double   homogeneous_coord[WORLD_NDIMS + 1];

   for(idim = 0; idim < WORLD_NDIMS; idim++) {
      homogeneous_coord[idim] = in_coord[idim];
   }
   homogeneous_coord[WORLD_NDIMS] = 1.0;

   for(idim = 0; idim < WORLD_NDIMS; idim++) {
      out_coord[idim] = 0.0;
      for(jdim = 0; jdim < WORLD_NDIMS + 1; jdim++) {
         out_coord[idim] += transform[idim][jdim] * homogeneous_coord[jdim];
      }
   }

}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : get_double_list
@INPUT      : dst - client data passed by ParseArgv
              key - matching key in argv
              nextarg - argument following key in argv
@OUTPUT     : (none)
@RETURNS    : TRUE since nextarg is used.
@DESCRIPTION: Gets a list (array) of double values.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : March 8, 1995 (Peter Neelin)
@MODIFIED   : 
---------------------------------------------------------------------------- */
int get_double_list(char *dst, char *key, char *nextarg)
{
#define VECTOR_SEPARATOR ','

   int      num_elements;
   int      num_alloc;
   double  *double_list;
   double   dvalue;
   char    *cur, *end, *prev;
   Double_Array *double_array;

   /* Check for a following argument */
   if(nextarg == NULL) {
      (void)fprintf(stderr, "\"%s\" option requires an additional argument\n", key);
      exit(EXIT_FAILURE);
   }

   /* Get pointers to array variables */
   double_array = (Double_Array *) dst;

   /* Set up pointers to end of string and first non-space character */
   end = nextarg + strlen(nextarg);
   cur = nextarg;
   while(isspace(*cur))
      cur++;
   num_elements = 0;
   num_alloc = 0;
   double_list = NULL;

   /* Loop through string looking for doubles */
   while(cur != end) {

      /* Get double */
      prev = cur;
      dvalue = strtod(prev, &cur);
      if(cur == prev) {
         (void)fprintf(stderr,
                       "expected vector of doubles for \"%s\", but got \"%s\"\n",
                       key, nextarg);
         exit(EXIT_FAILURE);
      }

      /* Add the value to the list */
      num_elements++;
      if(num_elements > num_alloc) {
         num_alloc += 20;
         if(double_list == NULL) {
            double_list = malloc(num_alloc * sizeof(*double_list));
         }
         else {
            double_list = realloc(double_list, num_alloc * sizeof(*double_list));
         }
      }
      double_list[num_elements - 1] = dvalue;

      /* Skip any spaces */
      while(isspace(*cur))
         cur++;

      /* Skip an optional comma */
      if(*cur == VECTOR_SEPARATOR)
         cur++;

   }

   /* Update the global variables */
   double_array->numvalues = num_elements;
   if(double_array->values != NULL) {
      free(double_array->values);
   }
   double_array->values = double_list;

   return TRUE;
}

/* Check range options and set appropriate values. At least one
   value will be set up for min and max. */
void verify_range_options(Double_Array * min, Double_Array * max,
                          Double_Array * range, Double_Array * binvalue)
{
   int      overspecified = FALSE;
   int      min_defaults, max_defaults;
   int      num_values;
   int      ivalue;

   /* Check the min and max */
   if(min->numvalues != 0 && max->numvalues != 0 && min->numvalues != max->numvalues) {
      (void)fprintf(stderr, "Number of floor ceil values differs\n");
      exit(EXIT_FAILURE);
   }
   num_values = min->numvalues;
   if(num_values == 0)
      num_values = max->numvalues;

   /* Check for range */
   if(range->numvalues > 0) {
      if(num_values == 0)
         num_values = range->numvalues / 2;
      else
         overspecified = TRUE;
   }

   /* Check for binvalue */
   if(binvalue->numvalues > 0) {
      if(num_values == 0)
         num_values = binvalue->numvalues;
      else
         overspecified = TRUE;
   }

   /* Print an error if too many options have been given */
   if(overspecified) {
      (void)fprintf(stderr, "Set only one of floor/ceil, range or binvalue\n");
      exit(EXIT_FAILURE);
   }

   /* Double-check that we got the sizes right */
   if((min->numvalues > 0 && min->numvalues != num_values) ||
      (max->numvalues > 0 && max->numvalues != num_values)) {
      (void)fprintf(stderr, "Problem with range specification\n");
      exit(EXIT_FAILURE);
   }

   /* Check if we are setting default values. Make sure that at least one
      value is set */
   if(num_values <= 0) {
      num_values = 1;
      min_defaults = max_defaults = TRUE;
   }
   else {
      min_defaults = (min->numvalues == 0 && max->numvalues > 0);
      max_defaults = (max->numvalues == 0 && min->numvalues > 0);
   }

   /* Allocate the space */
   if(min->numvalues <= 0) {
      min->numvalues = num_values;
      min->values = malloc(num_values * sizeof(double));
   }
   if(max->numvalues <= 0) {
      max->numvalues = num_values;
      max->values = malloc(num_values * sizeof(double));
   }
   if(min->values == NULL || max->values == NULL) {
      (void)fprintf(stderr, "Memory allocation error\n");
      exit(EXIT_FAILURE);
   }

   /* Set defaults, if needed */
   if(min_defaults) {
      for(ivalue = 0; ivalue < num_values; ivalue++)
         min->values[ivalue] = -DBL_MAX;
   }
   if(max_defaults) {
      for(ivalue = 0; ivalue < num_values; ivalue++)
         max->values[ivalue] = DBL_MAX;
   }

   /* Set min and max from range, if needed */
   if(range->numvalues > 0) {

      /* Check for odd number of values - they should be in pairs */
      if((vol_range.numvalues % 2) != 0) {
         (void)fprintf(stderr, "Specify range values in pairs (even number)\n");
         exit(EXIT_FAILURE);
      }

      /* Loop over values */
      for(ivalue = 0; ivalue * 2 + 1 < range->numvalues; ivalue++) {
         min->values[ivalue] = range->values[ivalue * 2];
         max->values[ivalue] = range->values[ivalue * 2 + 1];
      }

   }

   /* Set min and max from binvalue, if needed */
   if(binvalue->numvalues > 0) {
      for(ivalue = 0; ivalue < binvalue->numvalues; ivalue++) {
         min->values[ivalue] = binvalue->values[ivalue] - 0.5;
         max->values[ivalue] = binvalue->values[ivalue] + 0.5;
      }
   }

}

/* Initialiaze a Stats_Info structure */
void init_stats(Stats_Info * stats, int hist_bins)
{
   stats->vol_range[0] = -DBL_MAX;
   stats->vol_range[1] = DBL_MAX;
   stats->mask_range[0] = -DBL_MAX;
   stats->mask_range[1] = DBL_MAX;
   if(Hist && hist_bins > 0) {
      stats->histogram = calloc(hist_bins, sizeof(float));
      if(stats->histogram == NULL) {
         (void)fprintf(stderr, "Memory allocation error\n");
         exit(EXIT_FAILURE);
      }
   }
   else {
      stats->histogram = NULL;
   }
   stats->hvoxels = 0.0;               /* number of voxels in histogram  */
   stats->vvoxels = 0.0;               /* number of valid voxels         */
   stats->volume = 0.0;
   stats->vol_per = 0.0;
   stats->hist_per = 0.0;
   stats->min = DBL_MAX;
   stats->max = -DBL_MAX;
   stats->sum = 0.0;
   stats->sum2 = 0.0;
   stats->mean = 0.0;
   stats->variance = 0.0;
   stats->stddev = 0.0;
   stats->voxel_com_sum[0] = 0.0;
   stats->voxel_com_sum[1] = 0.0;
   stats->voxel_com_sum[2] = 0.0;
   stats->voxel_com[0] = 0.0;
   stats->voxel_com[1] = 0.0;
   stats->voxel_com[2] = 0.0;
   stats->world_com[0] = 0.0;
   stats->world_com[1] = 0.0;
   stats->world_com[2] = 0.0;
   stats->median = 0.0;
   stats->majority = 0.0;
   stats->biModalT = 0.0;
   stats->pct_T = 0.0;
   stats->entropy = 0.0;
}

/* Free things from a Stats_Info structure */
void free_stats(Stats_Info * stats)
{
   if(stats->histogram != NULL)
      free(stats->histogram);
}