Mercurial > hg > minc-tools
view doc/prog_ref.tex @ 1557:85a970da7e7e
* INDENTATION changes only (merging my and peter neelins code!)
author | rotor <rotor> |
---|---|
date | Wed, 20 Aug 2003 05:52:55 +0000 |
parents | f66fb8dec70a |
children |
line wrap: on
line source
% % Copyright 1993 Peter Neelin, McConnell Brain Imaging Centre, % Montreal Neurological Institute, McGill University. % Permission to use, copy, modify, and distribute this % software and its documentation for any purpose and without % fee is hereby granted, provided that the above copyright % notice appear in all copies. The author and McGill University % make no representations about the suitability of this % software for any purpose. It is provided "as is" without % express or implied warranty. % \documentclass{article} \title{MINC Programmer's Reference Manual} \author{Peter Neelin} \date{November 3, 1993} \textwidth 6.0in \oddsidemargin 0.125in \textheight 8.5in \topmargin -0.75in \parindent 0in \begin{document} \def\code#1{{\tt #1}} \maketitle \tableofcontents \clearpage \section{Dimension, variable and attribute names} Of all of the variables, dimensions and attributes described here, only the variable \code{MIimage} and its dimensions are required to be present in a MINC file. Additional variables, dimensions and attributes may be present in the file --- unrecognised variables and attributes should be ignored. A word on attribute conventions. All numeric values should be stored in one of the numeric types (\code{NC\_BYTE}, \code{NC\_SHORT}, \code{NC\_INT}, \code{NC\_FLOAT} or \code{NC\_DOUBLE}). Some numeric attributes must be specified in a definite unit --- time attributes (such as \code{MIrepetition\_time} and \code{MIradionuclide\_halflife}) are given in seconds. Other attributes have an associated attribute that gives the unit --- e.g. \code{MIinjection\_dose} and \code{MIdose\_units}. \subsection{NetCDF standard attributes} These attributes can be used with any variable. Fuller descriptions can be obtained from the NetCDF user's guide. \begin{description} \item [\code{MIunits}] Specifies the units of the variable values as a string --- units should be compatible with the udunits library. \item [\code{MIlong\_name}] A string giving a textual description of the variable for human consumption. \item [\code{MIvalid\_range}] A vector of two numbers specifying the minimum and maximum valid values in the variable. For the MINC routines the order is not important. For the \code{MIimage} variable, this attribute (or \code{MIvalid\_max} and \code{MIvalid\_min}) should always be present unless the defaults of full range for integer types and [0.0,1.0] for floating point types is correct. \item [\code{MIvalid\_max}] A number giving the valid maximum for the variable. \item [\code{MIvalid\_min}] A number giving the valid minimum for the variable. \item [\code{MI\_FillValue}] Number to be used for filling in values in the variable that are not explicitly written. \item [\code{MItitle}] A global string that provides a description of what is in the file. \item [\code{MIhistory}] A global string that should store one line for each program that has modified the file. Each line should contain the program name and arguments. \end{description} \subsection{MINC general attributes} These attributes apply to any variable in the file. \begin{description} \item [\code{MIvartype}] A string identifying the type of variable. Should be one of \code{MI\_GROUP}, \code{MI\_DIMENSION}, \code{MI\_DIM\_WIDTH} or \code{MI\_VARATT}. \item [\code{MIvarid}] A string that identifies the origin of the variable. All standard MINC variables should have this attribute with value \code{MI\_STDVAR}. Variables created by users should have a distinctive name that will not be the same as the names used by other applications. \item [\code{MIsigntype}] The NetCDF format does not need to know the sign of variables since it does not interpret values --- it is left up to the invoking program to worry about the signs of integers. Because the MINC interface translates variables, it must have this information. \code{MIsigntype} is a string with value \code{MI\_SIGNED} or \code{MI\_UNSIGNED}. The default values are \code{MI\_UNSIGNED} for bytes and \code{MI\_SIGNED} for all other types. \item [\code{MIparent}] A string identifying by name the parent variable of this variable (either in the data hierarchy or as the parent of this variable attribute). \item [\code{MIchildren}] A newline-separated list of the children of this variable (in the data hierarchy). \item [\code{MIcomments}] Any text that should be included with this variable. \item [\code{MIversion}] A string identifying the file version. The current version is \code{MI\_CURRENT\_VERSION}. Each version can be identified by a constant of the form \code{MI\_VERSION\_1\_0}. \end{description} The constants \code{MI\_TRUE} and \code{MI\_FALSE} are provided for boolean attributes. \subsection{Dimensions and dimension variables} The following are the names of dimensions and their corresponding dimension variables. Only \code{MIvector\_dimension} does not have a corresponding dimension variable. \begin{description} \item [\code{MIxspace}] Dimension and coordinate variable for x axis. \item [\code{MIyspace}] Dimension and coordinate variable for y axis. \item [\code{MIzspace}] Dimension and coordinate variable for z axis. \item [\code{MItime}] Dimension and coordinate for variable time axis. \item [\code{MItfrequency}] Dimension and coordinate variable for temporal frequency. \item [\code{MIxfrequency}] Dimension and coordinate variable for spatial frequency along the x axis. \item [\code{MIyfrequency}] Dimension and coordinate variable for spatial frequency along the y axis. \item [\code{MIzfrequency}] Dimension and coordinate variable for spatial frequency along the z axis. \item [\code{MIvector\_dimension}] Dimension only for components of a vector field. \end{description} In addition to dimension variables, we can have dimension width variables that specify the FWHM width of the sample at each point. \begin{description} \item [\code{MIxspace\_width}] Width of samples along x axis. \item [\code{MIyspace\_width}] Width of samples along y axis. \item [\code{MIzspace\_width}] Width of samples along z axis. \item [\code{MItime\_width}] Width of samples along time axis. \item [\code{MItfrequency\_width}] Width of samples along temporal frequency axis. \item [\code{MIxfrequency\_width}] Width of samples along x spatial frequency axis. \item [\code{MIyfrequency\_width}] Width of samples along y spatial frequency axis. \item [\code{MIzfrequency\_width}] Width of samples along z spatial frequency axis. \end{description} The attributes associated with dimension and dimension width variables are given below: \begin{description} \item [\code{MIspacing}] A string with value \code{MI\_REGULAR} (for a regularly spaced grid) or \code{MI\_IRREGULAR} (for irregular spacing of samples). If the value is \code{MI\_REGULAR}, then the variable is permitted to be a scalar instead of a vector varying with the dimension of the same name. Can be used for both dimension and dimension width variables. \item [\code{MIstep}] A number indicating the step between samples for regular spacing. This value may be negative to indicate orientation (to specify that \code{MIxspace} runs from patient right to left, for example). If the spacing is irregular, then the value can be an average step size. Applies only to dimension variables. \item [\code{MIstart}] The coordinate of the index 0 of the dimension. Applies only to dimension variables. \item [\code{MIspacetype}] A string identifying the type of coordinate space. Currently one of \code{MI\_NATIVE} (the coordinate system of the scanner), \code{MI\_TALAIRACH} (a standardized coordinate system), or \code{MI\_CALLOSAL} (another standardized coordinate system). Applies only to dimension variables. \item [\code{MIalignment}] A string indicating the position of the coordinates relative to each sample (remembering that each sample has a width). Can be one of \code{MI\_START}, \code{MI\_CENTRE} or \code{MI\_END}. Applies only to dimension variables. \item [\code{MIdirection\_cosines}] A vector with \code{MI\_NUM\_SPACE\_DIMS}(=3) elements giving the direction cosines of the axes. Although axes are labelled x, y and z, they may in fact have a signficantly different direction --- this attribute allows the direction relative to the true axes to be specified exactly. Applies only to dimension variables. Note that the dot product of the direction cosine with the corresponding axis ($(1,0,0)$, $(0,1,0)$ or $(0,0,1)$) should be positive so that the sign of the attribute \code{MIstep} contains the orientation information. \item [\code{MIwidth}] For regularly dimension widths, this numeric attribute gives the FWHM width of all samples. It can be used for irregular widths to specify the average width. Applies only to dimension width variables. \item [\code{MIfiltertype}] A string specifying the shape of the convolving filter. Currently, can be one of \code{MI\_SQUARE}, \code{MI\_GAUSSIAN} or \code{MI\_TRIANGULAR}. Applies only to dimension width variables. \end{description} \subsection{Root variable} The variable \code{MIrootvariable} is used as the root of the data hierarchy, with its \code{MIchildren} attribute pointing to the first level of group variables (including all of the MINC group variables), and with its \code{MIparent} attribute an empty string. \subsection{Image variable} The variable \code{MIimage} is used to store the image data. \begin{description} \item [\code{MIimagemax}] A variable attribute (ie. an attribute pointing to a variable of the same name) that stores the real value maximum for the image. This variable should not vary over the image dimensions of MIimage. The units of this variable define the units of the image. \item [\code{MIimagemin}] Like \code{MIimagemax}, but stores the real value minimum for the image. \code{MIimagemax} should not be present without \code{MIimagemin} and vice-versa. \item [\code{MIcomplete}] A boolean attribute (with values \code{MI\_TRUE} or \code{MI\_FALSE}) that indicates whether the variable has been written in its entirety. This can be used to detect program failure when writing out images as they are processed : \code{MIcomplete} is set to \code{MI\_FALSE} at the beginning and changed to \code{MI\_TRUE} at the end of processing. \end{description} \subsection{Patient variable} The variable \code{MIpatient} is a group variable with no dimensions and no useful value. It serves only to group together information about the patient. Attributes are modelled after ACR-NEMA conventions. \begin{description} \item [\code{MIfull\_name}] A string specifying the full name of the patient. \item [\code{MIother\_names}] A string giving other names for the patient. \item [\code{MIidentification}] A string specifying identification information for the patient. \item [\code{MIother\_ids}] A string giving other id's. \item [\code{MIbirthdate}] A string specifying the patient's birthdate. \item [\code{MIsex}] A string specifying the patient's sex: \code{MI\_MALE}, \code{MI\_FEMALE} or \code{MI\_OTHER}. \item [\code{MIage}] A number giving the patient's age. \item [\code{MIweight}] The patient's weight in kilograms. \item [\code{MIsize}] The patient's height or length in metres. \item [\code{MIaddress}] A string giving the patient's address. \item [\code{MIinsurance\_id}] A string giving the patient's insurance plan id. \end{description} \subsection{Study variable} Information about the study is grouped together in the \code{MIstudy} variable which has no dimensions or values. Attributes are modelled after ACR-NEMA conventions. \begin{description} \item [\code{MIstart\_time}] String giving time (and date) of start of the study. \item [\code{MIstart\_year}] Integer giving year of start. \item [\code{MIstart\_month}] Integer giving month (1-12) of start. \item [\code{MIstart\_day}] Integer giving day (1-31) of start. \item [\code{MIstart\_hour}] Integer giving hour (0-23) of start. \item [\code{MIstart\_minute}] Integer giving minute (0-59) of start. \item [\code{MIstart\_seconds}] Floating-point value giving seconds of start. \item [\code{MImodality}] Imaging modality : one of \code{MI\_PET}, \code{MI\_SPECT}, \code{MI\_GAMMA}, \code{MI\_MRI}, \code{MI\_MRS}, \code{MI\_MRA}, \code{MI\_CT}, \code{MI\_DSA}, \code{MI\_DR}. \item [\code{MImanufacturer}] String giving name of device manufacturer. \item [\code{MIdevice\_model}] String identifying device model. \item [\code{MIinstitution}] String identifying institution. \item [\code{MIdepartment}] String identifying department. \item [\code{MIstation\_id}] String identifying machine that generated the images. \item [\code{MIreferring\_physician}] Name of patient's primary physician. \item [\code{MIattending\_physician}] Physician administering the examination. \item [\code{MIradiologist}] Radiologist interpreting the examination. \item [\code{MIoperator}] Name of technologist operating scanner. \item [\code{MIadmitting\_diagnosis}] String description of admitting diagnosis. \item [\code{MIprocedure}] String description of the procedure employed. \item [\code{MIstudy\_id}] String identifying study. \end{description} \subsection{Acquisition variable} Information about the acquisition itself is stored as attributes of the \code{MIacquisition} variable (again, no dimensions and no values). \begin{description} \item [\code{MIprotocol}] String description of the protocol for image acquisition. \item [\code{MIscanning\_sequence}] String description of type of data taken (eg. for MR --- IR, SE, PS, etc.). \item [\code{MIrepetition\_time}] Time in seconds between pulse sequences. \item [\code{MIecho\_time}] Time in seconds between the middle of a 90 degree pulse and the middle of spin echo production. \item [\code{MIinversion\_time}] Time in seconds after the middle of the inverting RF pulse to the middle of the 90 degree pulse to detect the amount of longitudinal magnetization. \item [\code{MInum\_averages}] Number of times a given pulse sequence is repeated before any parameter is changed. \item [\code{MIimaging\_frequency}] Precession frequency in Hz of the imaged nucleus. \item [\code{MIimaged\_nucleus}] String specifying the nucleus that is resonant at the imaging frequency. \item [\code{MIradionuclide}] String specifying the isotope administered. \item [\code{MIcontrast\_agent}] String identifying the contrast or bolus agent. \item [\code{MIradionuclide\_halflife}] Half-life of radionuclide in seconds. \item [\code{MItracer}] String identifying tracer labelled with radionuclide that was injected. \item [\code{MIinjection\_time}] String giving time (and date) of injection. \item [\code{MIinjection\_year}] Integer giving year of injection. \item [\code{MIinjection\_month}] Integer giving month (1-12) of injection. \item [\code{MIinjection\_day}] Integer giving day (1-31) of injection. \item [\code{MIinjection\_hour}] Integer giving hour (0-23) of injection. \item [\code{MIinjection\_minute}] Integer giving minute (0-59) of injection. \item [\code{MIinjection\_seconds}] Floating-point value giving seconds of injection. \item [\code{MIinjection\_length}] Length of time of injection (in seconds). \item [\code{MIinjection\_dose}] Total dose of radionuclide or contrast agent injected (in units specified by \code{MIdose\_units}). \item [\code{MIdose\_units}] String giving units of dose. \item [\code{MIinjection\_volume}] Volume of injection in mL. \item [\code{MIinjection\_route}] String identifying administration route of injection. \end{description} \section{NetCDF routines} Because it is necessary to use NetCDF routines to access MINC files, a brief description of all NetCDF routines is provided here. For more information, see the NetCDF User's Guide. Note that the header file netcdf.h is automatically included by the header file minc.h. \subsection{Error handling} If an error occurs, the default behaviour is to print an error message and exit. It is possible to change this behaviour by modifying the value of the global variable ncopts. The default setting is \begin{verbatim} ncopts = NC_VERBOSE | NC_FATAL; \end{verbatim} which means print error messages and exit when an error occurs. To get error messages without having fatal errors, set \begin{verbatim} ncopts = NC_VERBOSE; \end{verbatim} For neither error messages nor fatal errors, set \begin{verbatim} ncopts = 0; \end{verbatim} In these last two cases, the calling routine should check the function value returned by each call to a NetCDF function. All routines return an integer value. If the value is $-1$ (\code{MI\_ERROR}), then an error has occurred. The value of the global variable \code{ncerr} gives more information on the type of error (see file \code{netcdf.h} for error codes). \subsection{NetCDF file operations} \begin{itemize} \item \code{nccreate} : Create the file specified by \code{path}. The argument \code{cmode} must have a value of either \code{NC\_CLOBBER} or \code{NC\_NOCLOBBER}. The return value is an identifier for the NetCDF file and is used by subsequent NetCDF function calls. \begin{verbatim} int nccreate(char* path,int cmode); \end{verbatim} \item \code{ncopen} : Open the file specified by \code{path}. \code{mode} must have value \code{NC\_NOWRITE} or \code{NC\_WRITE}. The return value is a NetCDF file identifier. \begin{verbatim} int ncopen(char* path,int mode); \end{verbatim} \item \code{ncredef} : Put an open file into define mode. \begin{verbatim} int ncredef(int cdfid); \end{verbatim} \item \code{ncendef} : Put file into data mode. \begin{verbatim} int ncendef(int cdfid); \end{verbatim} \item \code{ncclose} : Close a NetCDF file. \begin{verbatim} int ncclose(int cdfid); \end{verbatim} \item \code{ncinquire} : Inquire about the number of dimensions in a file, the number of variables, the number of global attributes or the id of the unlimited record dimension. Passing a NULL value for any of the pointers means do not return the associated value. \begin{verbatim} int ncinquire(int cdfid,int* ndims,int* nvars,int* natts,int* recdim); \end{verbatim} \item \code{ncsync} : Synchronize an open file to disk. \begin{verbatim} int ncsync(int cdfid); \end{verbatim} \item \code{ncabort} : Abort any changes to the file if it is in define mode. \begin{verbatim} int ncabort(int cdfid); \end{verbatim} \item \code{ncsetfill} : When \code{ncendef} is called, all variables are filled with a fill value by default. To turn this off, call this routine with \code{fillmode} set to \code{NC\_NOFILL} (to turn it back on, use \code{NC\_FILL}). \begin{verbatim} int ncsetfill(int cdfid,int fillmode); \end{verbatim} \end{itemize} \subsection{Dimension operations} \begin{itemize} \item \code{ncdimdef} : Define a dimension with a name and a length. The return value is a dimension id to be used in subsequent calls. \begin{verbatim} int ncdimdef(int cdfid,char* name,long length); \end{verbatim} \item \code{ncdimid} : Get a dimension id from a name. \begin{verbatim} int ncdimid(int cdfid,char* name); \end{verbatim} \item \code{ncdiminq} : Inquire about a dimension (name or length). \begin{verbatim} int ncdiminq(int cdfid,int dimid,char* name,long* length); \end{verbatim} \item \code{ncdimrename} : Rename a dimension. \begin{verbatim} int ncdimrename(int cdfid,int dimid,char* name); \end{verbatim} \end{itemize} \subsection{Variable operations} \begin{itemize} \item \code{ncvardef} : Define a variable by name, giving its datatype, number of dimensions and the dimension id's that subscript the variable. Returns a variable id to be used in subsequent calls. \begin{verbatim} int ncvardef(int cdfid,char* name,nc_type datatype,int ndims,int dim[]); \end{verbatim} \item \code{ncvarid} : Get a variable id from a name. \begin{verbatim} int ncvarid(int cdfid,char* name); \end{verbatim} \item \code{ncvarinq} : Inquire about a variable. Any NULL pointers mean do not return the associated value. It is possible to get the variable name, type, number of dimensions, dimension id's and number of attributes. \begin{verbatim} int ncvarinq(int cdfid,int varid,char* name,nc_type* datatype,int* ndims, int dim[],int* natts); \end{verbatim} \item \code{ncvarput1} : Store a single value at the coordinate specified by \code{coords}. \code{value} must be of the correct data type. \begin{verbatim} int ncvarput1(int cdfid,int varid,long coords[],void* value); \end{verbatim} \item \code{ncvarget1} : Get a single value from the coordinate specified by coords. \begin{verbatim} int ncvarget1(int cdfid,int varid,long coords[],void* value); \end{verbatim} \item \code{ncvarput} : Put a hyperslab (multi-dimensional rectangle) of values starting at \code{start} with edge lengths given by \code{count}. For the C interface, the last dimension varies fastest. Values must be of the correct type. \begin{verbatim} int ncvarput(int cdfid,int varid,long start[],long count[],void* value); \end{verbatim} \item \code{ncvarget} : Get a hyperslab (multi-dimensional rectangle) of values starting at \code{start} with edge lengths given by \code{count}. For the C interface, the last dimension varies fastest. Values must be of the correct type. \begin{verbatim} int ncvarget(int cdfid,int varid,long start[],long count[],void* value); \end{verbatim} \item \code{ncvarrename} : Rename a variable. \begin{verbatim} int ncvarrename(int cdfid,int varid,char* name); \end{verbatim} \item \code{nctypelen} : Get the length (in bytes) of a data type. \begin{verbatim} int nctypelen(nc_type datatype); \end{verbatim} \end{itemize} \subsection{Attribute operations} \begin{itemize} \item \code{ncattput} : Store an attribute by name with variable \code{varid}. The type and length of the attribute must be specified. \begin{verbatim} int ncattput(int cdfid,int varid,char* name,nc_type datatype,int len, void* value); \end{verbatim} \item \code{ncattinq} : Inquire about an attribute by name. Can get either type or length. \begin{verbatim} int ncattinq(int cdfid,int varid,char* name,nc_type* datatype,int* len); \end{verbatim} \item \code{ncattget} : Get an attribute's value by name. \begin{verbatim} int ncattget(int cdfid,int varid,char* name,void* value); \end{verbatim} \item \code{ncattcopy} : Copy an attribute from one variable to another. \begin{verbatim} int ncattcopy(int incdf,int invar,char* name,int outcdf,int outvar); \end{verbatim} \item \code{ncattname} : Get the name of an attribute from its number. The number is not an id, but can change as the number of attributes associated with a variable changes. Attribute numbers run from 0 to natts-1. \begin{verbatim} int ncattname(int cdfid,int varid,int attnum,char* name); \end{verbatim} \item \code{ncattrename} : Rename an attribute. \begin{verbatim} int ncattrename(int cdfid,int varid,char* name,char* newname); \end{verbatim} \item \code{ncattdel} : Delete an attribute. \begin{verbatim} int ncattdel(int cdfid,int varid,char* name); \end{verbatim} \end{itemize} \section{MINC routines} Error handling for MINC routines is the same as for NetCDF functions, with the exception that routines returning pointers will return \code{NULL} instead of \code{MI\_ERROR} when an error occurs. Error codes (returned in \code{ncerr}) can be found in the header file minc.h. \subsection{General convenience functions} \begin{itemize} \item \code{miexpand\_file} : Routine to expand a minc file that has been compressed with compress, pack, gzip or zip (using gunzip, zcat or pcat). The name of the temporary minc file is returned --- this string must be freed by the caller. If the file specified by \code{path} is not compressed, then its name is returned. \code{*create\_tempfile} is set to TRUE if a temporary file is created (and the caller needs to delete the file), FALSE if the original file name is returned. If tempfile is NULL, then the routine generates its own temporary file name, otherwise, the user provided name is used. If \code{header\_only} is TRUE, then the routine will expand only enough of the file to read the header. \begin{verbatim} public char *miexpand_file(char *path, char *tempfile, int header_only, int *created_tempfile); \end{verbatim} \item \code{miopen} : Like \code{ncopen}, but will temporarily uncompress files (compress, pack, gzip, zip) opened with mode \code{NC\_NOWRITE}. \begin{verbatim} public int miopen(char *path, int mode); \end{verbatim} \item \code{micreate} : Like \code{nccreate}. May be enhanced in the future. \begin{verbatim} public int micreate(char *path, int cmode); \end{verbatim} \item \code{miclose} : Like \code{ncclose}, but finishes up for \code{miopen} and \code{micreate}. \begin{verbatim} public int miclose(int cdfid); \end{verbatim} \item \code{miattget} : Like \code{ncattget}, but the caller specifies the desired numeric type and maximum number of values to get. Type is specified with \code{datatype} (the sign is the default for the type: \code{MI\_UNSIGNED} for \code{NC\_BYTE} and \code{MI\_SIGNED} otherwise). \code{max\_length} gives the maximum number of values to get and \code{att\_length} returns the number of values actually read. An error will occur if the attribute type is not numeric. \begin{verbatim} public int miattget(int cdfid, int varid, char *name, nc_type datatype, int max_length, void *value, int *att_length); \end{verbatim} \item \code{miattget1} : Like \code{miattget}, but only one value is returned. If there is more than one value, an error occurs. \begin{verbatim} public int miattget1(int cdfid, int varid, char *name, nc_type datatype, void *value); \end{verbatim} \item \code{miattgetstr} : Gets a string value from an attribute. \code{maxlen} gives the maximum number of characters to be returned (including the terminating \verb+'\0'+). The string is written to the array specified by value and a pointer to the string is returned. \begin{verbatim} public char *miattgetstr(int cdfid, int varid, char *name, int maxlen, char *value); \end{verbatim} \item \code{miattputint} : Write an integer attribute. \begin{verbatim} public int miattputint(int cdfid, int varid, char *name, int value); \end{verbatim} \item \code{miattputdbl} : Write a double precision attribute. \begin{verbatim} public int miattputdbl(int cdfid, int varid, char *name, double value); \end{verbatim} \item \code{miattputstr} : Write a string attribute. \begin{verbatim} public int miattputstr(int cdfid, int varid, char *name, char *value); \end{verbatim} \item \code{mivarget} : Like \code{ncvarget}, but the caller specifies the desired numeric type and sign (either \code{MI\_SIGNED} or \code{MI\_UNSIGNED}). \begin{verbatim} public int mivarget(int cdfid, int varid, long start[], long count[], nc_type datatype, char *sign, void *values); \end{verbatim} \item \code{mivarget1} : Like \code{ncvarget1}, but the caller specifies the desired numeric type and sign. \begin{verbatim} public int mivarget1(int cdfid, int varid, long mindex[], nc_type datatype, char *sign, void *value); \end{verbatim} \item \code{mivarput} : Like \code{ncvarput}, but the caller specifies the numeric type and sign of the values being passed. \begin{verbatim} public int mivarput(int cdfid, int varid, long start[], long count[], nc_type datatype, char *sign, void *values); \end{verbatim} \item \code{mivarput1} : Like \code{ncvarput1}, but the caller specifies the numeric type and sign of the values being passed. \begin{verbatim} public int mivarput1(int cdfid, int varid, long mindex[], nc_type datatype, char *sign, void *value); \end{verbatim} \item \code{miset\_coords} : Set \code{nvals} values of the coordinate vector \code{coords} to \code{value}. A pointer to \code{coords} is returned. \begin{verbatim} public long *miset_coords(int nvals, long value, long coords[]); \end{verbatim} \item \code{mitranslate\_coords} : Translates the coordinate vector \code{incoords} for subscripting variable \code{invar} of file \code{cdfid} to vector \code{outcoords} for subscripting variable \code{outvar}. This is useful when two variables have similar dimensions, but not necessarily the same order of dimensions. If \code{invar} has a dimension that is not in \code{outvar}, then the corresponding coordinate is ignored. If \code{outvar} has a dimension that is not in \code{invar}, then the corresponding coordinate is not modified. A pointer to \code{outcoords} is returned. \begin{verbatim} public long *mitranslate_coords(int cdfid, int invar, long incoords[], int outvar, long outcoords[]); \end{verbatim} \item \code{micopy\_all\_atts} : Copy all of the attributes of one variable to another (possibly across files). \begin{verbatim} public int micopy_all_atts(int incdfid, int invarid, int outcdfid, int outvarid); \end{verbatim} \item \code{micopy\_var\_def} : Copy a variable definition (including attributes) from one file to another. \code{outcdfid} must be in define mode. The id of the newly created variable is returned. \begin{verbatim} public int micopy_var_def(int incdfid, int invarid, int outcdfid); \end{verbatim} \item \code{micopy\_var\_values} : Copy a variable's values from one file to another. \code{incdfid} and \code{outcdfid} must be in data mode. \begin{verbatim} public int micopy_var_values(int incdfid, int invarid, int outcdfid, int outvarid); \end{verbatim} \item \code{micopy\_all\_var\_defs} : Copy all variable definitions from one file to another, excluding a list of variables. The list of \code{nexclude} variable id's is given in \code{excluded\_vars}. \code{outcdfid} must be in define mode. \begin{verbatim} public int micopy_all_var_defs(int incdfid, int outcdfid, int nexclude, int excluded_vars[]); \end{verbatim} \item \code{micopy\_all\_var\_values} : Copy all variable values from one file to another, excluding a list of variables. The list of \code{nexclude} variable id's is given in \code{excluded\_vars}. \code{outcdfid} must be in data mode. \begin{verbatim} public int micopy_all_var_values(int incdfid, int outcdfid, int nexclude, int excluded_vars[]); \end{verbatim} \end{itemize} \subsection{MINC-specific convenience functions} \begin{itemize} \item \code{miget\_datatype} : Get the type and sign information for an image variable. Signed data is indicated by setting \code{is\_signed} to \code{TRUE}; unsigned by \code{FALSE}. \begin{verbatim} public int miget_datatype(int cdfid, int imgid, nc_type *datatype, int *is_signed); \end{verbatim} \item \code{miget\_default\_range} : Returns the default range for a specified type and sign. \begin{verbatim} public int miget_default_range(nc_type datatype, int is_signed, double default_range[]); \end{verbatim} \item \code{miget\_valid\_range} : Gets the valid range information for an image variable. This function handles potential type differences between the \code{valid\_range} attribute and the image data. These differences (particularly float images with double \code{valid\_range}) could otherwise lead to problems in properly identifying invalid data. \begin{verbatim} public int miget_valid_range(int cdfid, int imgid, double valid_range[]); \end{verbatim} \item \code{miset\_valid\_range} : Sets the valid range information for an image variable. This function follows the NetCDF convention of having both variable data and \code{valid\_range} attribute with the same type. \begin{verbatim} public int miset_valid_range(int cdfid, int imgid, double valid_range[]); \end{verbatim} \item \code{miget\_image\_range} : Gets the maximum real range of the image data based on the image-min and image-max variables. \begin{verbatim} public int miget_image_range(int cdfid, double image_range[]); \end{verbatim} \item \code{mivar\_exists} : Tests for the existence of a variable. Returns true if the variable exists. \begin{verbatim} public int mivar_exists(int cdfid, char *varname); \end{verbatim} \item \code{miattput\_pointer} : Create an attribute \code{name} in the variable \code{varid} that points to the variable \code{ptrvarid}. \begin{verbatim} public int miattput_pointer(int cdfid, int varid, char *name, int ptrvarid); \end{verbatim} \item \code{miattget\_pointer} : Returns the variable id pointed to by attribute \code{name} of variable \code{varid}. \begin{verbatim} public int miattget_pointer(int cdfid, int varid, char *name); \end{verbatim} \item \code{miadd\_child} : Add the name of variable \code{child\_varid} to the \code{MIchildren} attribute of variable \code{parent\_varid} and set the \code{MIparent} attribute of variable \code{child\_varid} to the name of variable \code{parent\_varid}. If the attributes do not exist, they are created. The names in the attribute \code{MIchildren} are separated by newlines. \begin{verbatim} public int miadd_child(int cdfid, int parent_varid, int child_varid); \end{verbatim} \item \code{micreate\_std\_variable} : Create any of the standard MINC variables and set some attributes. Called in the manner of \code{ncvardef}. The id of the newly created variable is returned. For all variables, attributes \code{MIvarid}, \code{MIvartype} and \code{MIversion} are all set. For dimension and dimension width variables, \code{MIspacing} is set to \code{MI\_REGULAR} if the number of dimensions is zero and \code{MI\_IRREGULAR} otherwise. For dimension variables, \code{MIalignment} is set to \code{MI\_CENTRE} unless the variable is \code{MItime}, then it is set to \code{MI\_START}. As well, MIcomments is set to a string describing the direction of the world coordinates of spatial dimensions. For dimension width variables, \code{MIfiltertype} is set to \code{MI\_SQUARE}. For \code{MIimage} and for \code{MIimagemax} and \code{MIimagemin}, dimensions are checked to ensure that the last two do not vary over image dimensions and attribute pointers from \code{MIimage} are created to point to the other two. \begin{verbatim} public int micreate_std_variable(int cdfid, char *name, nc_type datatype, int ndims, int dim[]); \end{verbatim} \item \code{micreate\_group\_variable} : Like \code{micreate\_std\_variable}, but \code{ndims} is always set to zero and the datatype is \code{NC\_INT}. The id of the newly created variable is returned. \begin{verbatim} public int micreate_group_variable(int cdfid, char *name); \end{verbatim} \end{itemize} \subsection{Image conversion variable functions} \begin{itemize} \item \code{miicv\_create} : Create an image conversion variable and set the defaults --- an icv identifier is returned for later use (or \code{MI\_ERROR} if an error occurs). The old limit of \code{MI\_MAX\_NUM\_ICV} icv's that can exist at one time has been removed, although the definition remains. \begin{verbatim} public int miicv_create(); \end{verbatim} \item \code{miicv\_free} : Free an image conversion variable. \begin{verbatim} public int miicv_free(int icvid); \end{verbatim} \item \code{miicv\_setdbl} : Set a numeric icv property to a double value. \begin{verbatim} public int miicv_setdbl(int icvid, int icv_property, double value); \end{verbatim} \item \code{miicv\_setint} : Set a numeric icv property to an integer value. \begin{verbatim} public int miicv_setint(int icvid, int icv_property, int value); \end{verbatim} \item \code{miicv\_setlong} : Set a numeric icv property to a long integer value. \begin{verbatim} public int miicv_setlong(int icvid, int icv_property, long value); \end{verbatim} \item \code{miicv\_setstr} : Set a string icv property. \begin{verbatim} public int miicv_set(int icvid, int icv_property, char *value); \end{verbatim} \item \code{miicv\_inqdbl} : Inquire about a numeric icv property. \code{value} points to the double precision variable in which the value should be returned. \begin{verbatim} public int miicv_inqdbl(int icvid, int icv_property, double *value); \end{verbatim} \item \code{miicv\_inqint} : Inquire about a numeric icv property. \code{value} points to the integer variable in which the value should be returned. \begin{verbatim} public int miicv_inqint(int icvid, int icv_property, int *value); \end{verbatim} \item \code{miicv\_inqlong} : Inquire about a numeric icv property. \code{value} points to the long integer variable in which the value should be returned. \begin{verbatim} public int miicv_inqlong(int icvid, int icv_property, long *value); \end{verbatim} \item \code{miicv\_inqstr} : Inquire about a string icv property. \code{value} points to the character array in which the value should be returned. The calling routine must allocate enough space for the return string. \begin{verbatim} public int miicv_inqstr(int icvid, int icv_property, char *value); \end{verbatim} \item \code{miicv\_attach} : Attach a MINC file and image variable to an icv. Note that icv properties cannot be modified while a variable is attached to the icv. If a variable is already attached to the icv, then it is automatically detached. The file \code{icvid} must be in data mode. \begin{verbatim} public int miicv_attach(int icvid, int cdfid, int varid); \end{verbatim} \item \code{miicv\_ndattach} : Like \code{miicv\_attach} but no dimension conversion facilities are available (much like setting \code{MI\_ICV\_DO\_DIM\_CONV} to \code{FALSE}). This avoids linking in all of the dimension conversion routines when they are not needed (for machines where memory may be a concern). \begin{verbatim} public int miicv_ndattach(int icvid, int cdfid, int varid); \end{verbatim} \item \code{miicv\_detach} : Detach a variable from an icv. \begin{verbatim} public int miicv_detach(int icvid); \end{verbatim} \item \code{miicv\_get} : Get a hyperslab of values from a variable through an icv. \begin{verbatim} public int miicv_get(int icvid, long start[], long count[], void *values); \end{verbatim} \item \code{miicv\_put} : Put a hyperslab of values to a variable through an icv. \begin{verbatim} public int miicv_put(int icvid, long start[], long count[], void *values); \end{verbatim} \end{itemize} \section{Image conversion variable properties} \begin{itemize} \item \code{MI\_ICV\_TYPE} (type \code{nc\_type}) : Specifies the type of values that the user wants. Modifying this property automatically causes \code{MI\_ICV\_VALID\_MAX} and \code{MI\_ICV\_VALID\_MIN} to be set to their default values. Default = \code{NC\_SHORT}. \item \code{MI\_ICV\_SIGN} (type \code{char *}) : Specifies the sign of values that the user wants (irrelevant for floating point types). Modifying this property automatically causes \code{MI\_ICV\_VALID\_MAX} and \code{MI\_ICV\_VALID\_MIN} to be set to their default values. Default = \code{MI\_SIGNED}. \item \code{MI\_ICV\_DO\_RANGE} (type \code{int}) : When \code{TRUE}, range conversions (for valid max and min and for value normalization) are done. When \code{FALSE}, values are not modified. Default = \code{TRUE}. \item \code{MI\_ICV\_VALID\_MAX} (type \code{double}) : Valid maximum value (ignored for floating point types). Default = maximum legal value for type and sign (1.0 for floating point types). \item \code{MI\_ICV\_VALID\_MIN} (type \code{double}) : Valid minimum value (ignored for floating point types). Default = minimum legal value for type and sign (1.0 for floating point types). \item \code{MI\_ICV\_DO\_NORM} (type \code{int}) : If \code{TRUE}, then normalization of values is done (see user guide for details of normalization). Default = \code{FALSE}. \item \code{MI\_ICV\_USER\_NORM} (type \code{int}) : If \code{TRUE}, then the user specifies the normalization maximum and minimum. If \code{FALSE}, values are taken as maximum and minimum for whole image variable. Default = \code{FALSE}. \item \code{MI\_ICV\_IMAGE\_MAX} (type \code{double}) : Image maximum for user normalization. Default = 1.0. \item \code{MI\_ICV\_IMAGE\_MIN} (type \code{double}) : Image minimum for user normalization. Default = 0.0. \item \code{MI\_ICV\_NORM\_MAX} (type \code{double}) : Read-only value giving the user image maximum when doing normalization (either the maximum in the variable or the user specified maximum). \item \code{MI\_ICV\_NORM\_MIN} (type \code{double}) : Read-only value giving the user image minimum when doing normalization (either the minimum in the variable or the user specified minimum). \item \code{MI\_ICV\_DO\_FILLVALUE} (type \code{int}) : If set to \code{TRUE}, then range checking is done on input and values that are out of range (value in the file less than \code{MIvalid\_min} or greater than \code{MIvalid\_max}) are set to the value of \code{MI\_ICV\_FILLVALUE}. Default = \code{FALSE}. \item \code{MI\_ICV\_FILLVALUE} (type \code{double}) : Value to use when pixels are out of range (on input only). This value is written to user's buffer directly without any scaling. Default = \code{-DBL\_MAX}. \item \code{MI\_ICV\_DO\_DIM\_CONV} (type \code{int}) : If set to \code{TRUE}, then dimension conversions may be done. Default = \code{FALSE}. \item \code{MI\_ICV\_DO\_SCALAR} (type \code{int}) : If \code{TRUE}, then if \code{MIvector\_dimension} is the fastest varying dimension of the variable, elements are averaged and the icv behaves as though this dimension did not exist. Default = \code{TRUE}. \item \code{MI\_ICV\_XDIM\_DIR} (type \code{int}) : Indicates the desired orientation of the x image dimensions (\code{MIxspace} and \code{MIxfrequency}). Values can be one of \code{MI\_ICV\_POSITIVE}, \code{MI\_ICV\_NEGATIVE} or \code{MI\_ICV\_ANYDIR}. A positive orientation means that the \code{MIstep} attribute of the dimension is positive. \code{MI\_ICV\_ANYDIR} means that no flipping is done. Default = \code{MI\_ICV\_POSITIVE}. \item \code{MI\_ICV\_YDIM\_DIR} (type \code{int}) : Indicates the desired orientation of the y image dimensions. Default = \code{MI\_ICV\_POSITIVE}. \item \code{MI\_ICV\_ZDIM\_DIR} (type \code{int}) : Indicates the desired orientation of the z image dimensions. Default = \code{MI\_ICV\_POSITIVE}. \item \code{MI\_ICV\_ADIM\_SIZE} (type \code{long}) : Specifies the desired size of the fastest varying image dimension. A value of \code{MI\_ICV\_ANYSIZE} means that the actual size of the dimension should be used. Default = \code{MI\_ICV\_ANYSIZE}. \item \code{MI\_ICV\_BDIM\_SIZE} (type \code{long}) : Specifies the desired size of the second image dimension. Default = \code{MI\_ICV\_ANYSIZE}. \item \code{MI\_ICV\_KEEP\_ASPECT} (type \code{int}) : If \code{TRUE}, then image dimensions are resized by the same amount so that aspect ratio is maintained. Default = \code{TRUE}. \item \code{MI\_ICV\_ADIM\_STEP} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstep} for the first (fastest varying) image dimension after dimension conversion. \item \code{MI\_ICV\_BDIM\_STEP} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstep} for the second image dimension after dimension conversion. \item \code{MI\_ICV\_ADIM\_START} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstart} for the first (fastest varying) image dimension after dimension conversion. \item \code{MI\_ICV\_BDIM\_START} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstart} for the second image dimension after dimension conversion. \item \code{MI\_ICV\_NUM\_IMGDIMS} (type \code{int}) : Specifies the number of image dimensions used in dimension conversions. Default = 2. \item \code{MI\_ICV\_DIM\_SIZE} (type \code{long}) : Specifies the desired size of an image dimension. The number of the dimension to be changed should be added to the property (adding zero corresponds to the fastest varying dimension). Default = \code{MI\_ICV\_ANYSIZE}. \item \code{MI\_ICV\_DIM\_STEP} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstep} for the an image dimension after dimension conversion. The number of the dimension to be queried should be added to the property (adding zero corresponds to the fastest varying dimension). \item \code{MI\_ICV\_DIM\_START} (type \code{double}) : Read-only property that gives the equivalent of attribute \code{MIstart} for an image dimension after dimension conversion. The number of the dimension to be queried should be added to the property (adding zero corresponds to the fastest varying dimension). \item \code{MI\_ICV\_NUM\_DIMS} (type \code{int}) : Read-only property that gives the number of dimensions of the image variable, taking into account the conversion of vector images into scalar images. \item \code{MI\_ICV\_CDFID} (type \code{int}) : Read-only property that gives the id of the currently attached NetCDF file, or \code{MI\_ERROR} if no file is attached. \item \code{MI\_ICV\_VARID} (type \code{int}) : Read-only property that gives the id of the currently attached NetCDF variable, or \code{MI\_ERROR} if no variable is attached. \item \code{MI\_ICV\_MAXVAR} (type \code{char *}) : String property specifying the name of the variable that gives the image maximum. Default = \code{MIimagemax}. \item \code{MI\_ICV\_MINVAR} (type \code{char *}) : String property specifying the name of the variable that gives the image minimum. Default = \code{MIimagemin}. \end{itemize} \section{Known bugs} \begin{itemize} \item For dimension conversion with image conversion variables, the values of \code{MI\_ICV\_DIM\_START}, \code{MI\_ICV\_ADIM\_START} and \code{MI\_ICV\_BDIM\_START} are computed assuming that \code{MIalignment} is equal to \code{MI\_CENTRE}. \end{itemize} \end{document}