Mercurial > hg > mercurial-source
view mercurial/worker.py @ 40808:33eb670e2834
wireprotov2: define semantics for content redirects
When I implemented the clonebundles feature and deployed it on
hg.mozilla.org using Amazon S3 as a content server, server-side CPU
and bandwidth usage dropped off a cliff and a ton of server scaling
headaches went away pretty much the instant clients with support for
clonebundles were rolled out to Firefox CI.
An obvious takeaway from that experience was that offloading server
load to scalable file servers - potentially backed by a CDN - is a
really good idea. Another takeaway was that Mercurial's wire protocol
wasn't in a good position to support data offload generally.
In wire protocol version 1, there isn't a mechanism in the protocol to
say "grab the data from over here instead." For HTTP, we could teach
the client to follow HTTP redirects. Or we could invent a media type
that encoded redirects inline. But for SSH, we were pretty much out of
luck because that protocol wasn't very flexible.
Wire protocol version 2 offers the opportunity to do something better.
The recent generic server-side content caching layer in the wire
protocol version 2 server demonstrated that it is possible to have
drop-in caching of responses to command requests. This by itself
adds tons of value and already makes the built-in server much more
scalable. But I don't want to stop there.
The existing server-side caching implementation has a big weakness:
it requires the server to send data to the client. This means that
the Mercurial server is potentially sending gigabytes of data to
thousands of clients. This is problematic because compared to scaling
static file servers, scaling dynamic servers is *hard*.
A solution to this is to "offload" serving of content to something
that isn't the Mercurial server. By offloading content serving, you
turn the Mercurial server from a centralized monolithic service to
a distributed mostly-indexing service. Assuming high rates of content
offload, this should drastically reduce the total work performed by
the Mercurial server, both in terms of CPU and data transfer. This
will make Mercurial servers vastly easier to scale.
This commit defines the semantics for "content redirects" in wire
protocol version 2. Essentially:
* Servers advertise the set of locations a response could be served
from.
* When making requests, clients advertise the set of locations they
are willing to fetch content from.
* Servers can then replace the inline response with one that says
"get the response from over here instead."
This feature - when fully implemented - will allow extending the
server-side caching layer to facilitate such things as integrating
your server-side cache with a scalable blob store (such as S3 or
a CDN) and offloading most data transfer to that external service.
This feature could also be leveraged for load balancing. e.g.
requests could come into a central server and then get redirected
to an available mirror depending on server availability or locality.
There's tons of potential :)
Differential Revision: https://phab.mercurial-scm.org/D4774
author | Gregory Szorc <gregory.szorc@gmail.com> |
---|---|
date | Wed, 26 Sep 2018 18:02:06 -0700 |
parents | c08ea1e219c0 |
children | 909c31805f54 03f7d0822ec1 |
line wrap: on
line source
# worker.py - master-slave parallelism support # # Copyright 2013 Facebook, Inc. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import errno import os import signal import sys import threading import time try: import selectors selectors.BaseSelector except ImportError: from .thirdparty import selectors2 as selectors from .i18n import _ from . import ( encoding, error, pycompat, scmutil, util, ) def countcpus(): '''try to count the number of CPUs on the system''' # posix try: n = int(os.sysconf(r'SC_NPROCESSORS_ONLN')) if n > 0: return n except (AttributeError, ValueError): pass # windows try: n = int(encoding.environ['NUMBER_OF_PROCESSORS']) if n > 0: return n except (KeyError, ValueError): pass return 1 def _numworkers(ui): s = ui.config('worker', 'numcpus') if s: try: n = int(s) if n >= 1: return n except ValueError: raise error.Abort(_('number of cpus must be an integer')) return min(max(countcpus(), 4), 32) if pycompat.isposix or pycompat.iswindows: _STARTUP_COST = 0.01 # The Windows worker is thread based. If tasks are CPU bound, threads # in the presence of the GIL result in excessive context switching and # this overhead can slow down execution. _DISALLOW_THREAD_UNSAFE = pycompat.iswindows else: _STARTUP_COST = 1e30 _DISALLOW_THREAD_UNSAFE = False def worthwhile(ui, costperop, nops, threadsafe=True): '''try to determine whether the benefit of multiple processes can outweigh the cost of starting them''' if not threadsafe and _DISALLOW_THREAD_UNSAFE: return False linear = costperop * nops workers = _numworkers(ui) benefit = linear - (_STARTUP_COST * workers + linear / workers) return benefit >= 0.15 def worker(ui, costperarg, func, staticargs, args, threadsafe=True): '''run a function, possibly in parallel in multiple worker processes. returns a progress iterator costperarg - cost of a single task func - function to run staticargs - arguments to pass to every invocation of the function args - arguments to split into chunks, to pass to individual workers threadsafe - whether work items are thread safe and can be executed using a thread-based worker. Should be disabled for CPU heavy tasks that don't release the GIL. ''' enabled = ui.configbool('worker', 'enabled') if enabled and worthwhile(ui, costperarg, len(args), threadsafe=threadsafe): return _platformworker(ui, func, staticargs, args) return func(*staticargs + (args,)) def _posixworker(ui, func, staticargs, args): workers = _numworkers(ui) oldhandler = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, signal.SIG_IGN) pids, problem = set(), [0] def killworkers(): # unregister SIGCHLD handler as all children will be killed. This # function shouldn't be interrupted by another SIGCHLD; otherwise pids # could be updated while iterating, which would cause inconsistency. signal.signal(signal.SIGCHLD, oldchldhandler) # if one worker bails, there's no good reason to wait for the rest for p in pids: try: os.kill(p, signal.SIGTERM) except OSError as err: if err.errno != errno.ESRCH: raise def waitforworkers(blocking=True): for pid in pids.copy(): p = st = 0 while True: try: p, st = os.waitpid(pid, (0 if blocking else os.WNOHANG)) break except OSError as e: if e.errno == errno.EINTR: continue elif e.errno == errno.ECHILD: # child would already be reaped, but pids yet been # updated (maybe interrupted just after waitpid) pids.discard(pid) break else: raise if not p: # skip subsequent steps, because child process should # be still running in this case continue pids.discard(p) st = _exitstatus(st) if st and not problem[0]: problem[0] = st def sigchldhandler(signum, frame): waitforworkers(blocking=False) if problem[0]: killworkers() oldchldhandler = signal.signal(signal.SIGCHLD, sigchldhandler) ui.flush() parentpid = os.getpid() pipes = [] for pargs in partition(args, workers): # Every worker gets its own pipe to send results on, so we don't have to # implement atomic writes larger than PIPE_BUF. Each forked process has # its own pipe's descriptors in the local variables, and the parent # process has the full list of pipe descriptors (and it doesn't really # care what order they're in). rfd, wfd = os.pipe() pipes.append((rfd, wfd)) # make sure we use os._exit in all worker code paths. otherwise the # worker may do some clean-ups which could cause surprises like # deadlock. see sshpeer.cleanup for example. # override error handling *before* fork. this is necessary because # exception (signal) may arrive after fork, before "pid =" assignment # completes, and other exception handler (dispatch.py) can lead to # unexpected code path without os._exit. ret = -1 try: pid = os.fork() if pid == 0: signal.signal(signal.SIGINT, oldhandler) signal.signal(signal.SIGCHLD, oldchldhandler) def workerfunc(): for r, w in pipes[:-1]: os.close(r) os.close(w) os.close(rfd) for result in func(*(staticargs + (pargs,))): os.write(wfd, util.pickle.dumps(result)) return 0 ret = scmutil.callcatch(ui, workerfunc) except: # parent re-raises, child never returns if os.getpid() == parentpid: raise exctype = sys.exc_info()[0] force = not issubclass(exctype, KeyboardInterrupt) ui.traceback(force=force) finally: if os.getpid() != parentpid: try: ui.flush() except: # never returns, no re-raises pass finally: os._exit(ret & 255) pids.add(pid) selector = selectors.DefaultSelector() for rfd, wfd in pipes: os.close(wfd) selector.register(os.fdopen(rfd, r'rb', 0), selectors.EVENT_READ) def cleanup(): signal.signal(signal.SIGINT, oldhandler) waitforworkers() signal.signal(signal.SIGCHLD, oldchldhandler) selector.close() status = problem[0] if status: if status < 0: os.kill(os.getpid(), -status) sys.exit(status) try: openpipes = len(pipes) while openpipes > 0: for key, events in selector.select(): try: yield util.pickle.load(key.fileobj) except EOFError: selector.unregister(key.fileobj) key.fileobj.close() openpipes -= 1 except IOError as e: if e.errno == errno.EINTR: continue raise except: # re-raises killworkers() cleanup() raise cleanup() def _posixexitstatus(code): '''convert a posix exit status into the same form returned by os.spawnv returns None if the process was stopped instead of exiting''' if os.WIFEXITED(code): return os.WEXITSTATUS(code) elif os.WIFSIGNALED(code): return -os.WTERMSIG(code) def _windowsworker(ui, func, staticargs, args): class Worker(threading.Thread): def __init__(self, taskqueue, resultqueue, func, staticargs, group=None, target=None, name=None, verbose=None): threading.Thread.__init__(self, group=group, target=target, name=name, verbose=verbose) self._taskqueue = taskqueue self._resultqueue = resultqueue self._func = func self._staticargs = staticargs self._interrupted = False self.daemon = True self.exception = None def interrupt(self): self._interrupted = True def run(self): try: while not self._taskqueue.empty(): try: args = self._taskqueue.get_nowait() for res in self._func(*self._staticargs + (args,)): self._resultqueue.put(res) # threading doesn't provide a native way to # interrupt execution. handle it manually at every # iteration. if self._interrupted: return except pycompat.queue.Empty: break except Exception as e: # store the exception such that the main thread can resurface # it as if the func was running without workers. self.exception = e raise threads = [] def trykillworkers(): # Allow up to 1 second to clean worker threads nicely cleanupend = time.time() + 1 for t in threads: t.interrupt() for t in threads: remainingtime = cleanupend - time.time() t.join(remainingtime) if t.is_alive(): # pass over the workers joining failure. it is more # important to surface the inital exception than the # fact that one of workers may be processing a large # task and does not get to handle the interruption. ui.warn(_("failed to kill worker threads while " "handling an exception\n")) return workers = _numworkers(ui) resultqueue = pycompat.queue.Queue() taskqueue = pycompat.queue.Queue() # partition work to more pieces than workers to minimize the chance # of uneven distribution of large tasks between the workers for pargs in partition(args, workers * 20): taskqueue.put(pargs) for _i in range(workers): t = Worker(taskqueue, resultqueue, func, staticargs) threads.append(t) t.start() try: while len(threads) > 0: while not resultqueue.empty(): yield resultqueue.get() threads[0].join(0.05) finishedthreads = [_t for _t in threads if not _t.is_alive()] for t in finishedthreads: if t.exception is not None: raise t.exception threads.remove(t) except (Exception, KeyboardInterrupt): # re-raises trykillworkers() raise while not resultqueue.empty(): yield resultqueue.get() if pycompat.iswindows: _platformworker = _windowsworker else: _platformworker = _posixworker _exitstatus = _posixexitstatus def partition(lst, nslices): '''partition a list into N slices of roughly equal size The current strategy takes every Nth element from the input. If we ever write workers that need to preserve grouping in input we should consider allowing callers to specify a partition strategy. mpm is not a fan of this partitioning strategy when files are involved. In his words: Single-threaded Mercurial makes a point of creating and visiting files in a fixed order (alphabetical). When creating files in order, a typical filesystem is likely to allocate them on nearby regions on disk. Thus, when revisiting in the same order, locality is maximized and various forms of OS and disk-level caching and read-ahead get a chance to work. This effect can be quite significant on spinning disks. I discovered it circa Mercurial v0.4 when revlogs were named by hashes of filenames. Tarring a repo and copying it to another disk effectively randomized the revlog ordering on disk by sorting the revlogs by hash and suddenly performance of my kernel checkout benchmark dropped by ~10x because the "working set" of sectors visited no longer fit in the drive's cache and the workload switched from streaming to random I/O. What we should really be doing is have workers read filenames from a ordered queue. This preserves locality and also keeps any worker from getting more than one file out of balance. ''' for i in range(nslices): yield lst[i::nslices]