view tests/killdaemons.py @ 43094:264a2cbb25d0

graphmod: remove support for graph lines mixing parent/grandparent styles (BC) Currently, if the configuration for a graph edge draw style has multiple bytes (at least on python2), it is interpreted as "this is a request to draw the line partially in the style of the parent, partially in the style of the grandparent". This precludes the configuration handling unicode characters (which trigger the `len > 1` check, at least on python2), and I believe was part of the reason that beautifygraph was written the way it was. Talking with the person who implemented this, it appears to have been to achieve feature parity with the rendering of the smartlog extension. I suspect that this isn't actually used outside of that situation, so I think that we can remove it without much issue. This will make it so that multi-character edges are possible, and render any existing configuration that uses this feature with these multiple characters. This is *not* going to adjust the width of everything to make it line up correctly, please see the test that's being modified in this changeset for an example of how the previous configuration now renders. Note also that the previous configuration seems to have been broken, or at least it was behaving in a really non-obvious way - it was avoiding the grandparent character(s) when it should have been displaying them! This is why so many "!" characters changed to "3."; I don't know if this was intentional. Differential Revision: https://phab.mercurial-scm.org/D5112
author Kyle Lippincott <spectral@google.com>
date Tue, 16 Oct 2018 04:59:36 -0700 (2018-10-16)
parents 89793289c891
children 2372284d9457
line wrap: on
line source
#!/usr/bin/env python

from __future__ import absolute_import
import errno
import os
import signal
import sys
import time

if os.name =='nt':
    import ctypes

    _BOOL = ctypes.c_long
    _DWORD = ctypes.c_ulong
    _UINT = ctypes.c_uint
    _HANDLE = ctypes.c_void_p

    ctypes.windll.kernel32.CloseHandle.argtypes = [_HANDLE]
    ctypes.windll.kernel32.CloseHandle.restype = _BOOL

    ctypes.windll.kernel32.GetLastError.argtypes = []
    ctypes.windll.kernel32.GetLastError.restype = _DWORD

    ctypes.windll.kernel32.OpenProcess.argtypes = [_DWORD, _BOOL, _DWORD]
    ctypes.windll.kernel32.OpenProcess.restype = _HANDLE

    ctypes.windll.kernel32.TerminateProcess.argtypes = [_HANDLE, _UINT]
    ctypes.windll.kernel32.TerminateProcess.restype = _BOOL

    ctypes.windll.kernel32.WaitForSingleObject.argtypes = [_HANDLE, _DWORD]
    ctypes.windll.kernel32.WaitForSingleObject.restype = _DWORD

    def _check(ret, expectederr=None):
        if ret == 0:
            winerrno = ctypes.GetLastError()
            if winerrno == expectederr:
                return True
            raise ctypes.WinError(winerrno)

    def kill(pid, logfn, tryhard=True):
        logfn('# Killing daemon process %d' % pid)
        PROCESS_TERMINATE = 1
        PROCESS_QUERY_INFORMATION = 0x400
        SYNCHRONIZE = 0x00100000
        WAIT_OBJECT_0 = 0
        WAIT_TIMEOUT = 258
        WAIT_FAILED = _DWORD(0xFFFFFFFF).value
        handle = ctypes.windll.kernel32.OpenProcess(
                PROCESS_TERMINATE|SYNCHRONIZE|PROCESS_QUERY_INFORMATION,
                False, pid)
        if handle is None:
            _check(0, 87) # err 87 when process not found
            return # process not found, already finished
        try:
            r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100)
            if r == WAIT_OBJECT_0:
                pass # terminated, but process handle still available
            elif r == WAIT_TIMEOUT:
                _check(ctypes.windll.kernel32.TerminateProcess(handle, -1))
            elif r == WAIT_FAILED:
                _check(0)  # err stored in GetLastError()

            # TODO?: forcefully kill when timeout
            #        and ?shorter waiting time? when tryhard==True
            r = ctypes.windll.kernel32.WaitForSingleObject(handle, 100)
                                                       # timeout = 100 ms
            if r == WAIT_OBJECT_0:
                pass # process is terminated
            elif r == WAIT_TIMEOUT:
                logfn('# Daemon process %d is stuck')
            elif r == WAIT_FAILED:
                _check(0)  # err stored in GetLastError()
        except: #re-raises
            ctypes.windll.kernel32.CloseHandle(handle) # no _check, keep error
            raise
        _check(ctypes.windll.kernel32.CloseHandle(handle))

else:
    def kill(pid, logfn, tryhard=True):
        try:
            os.kill(pid, 0)
            logfn('# Killing daemon process %d' % pid)
            os.kill(pid, signal.SIGTERM)
            if tryhard:
                for i in range(10):
                    time.sleep(0.05)
                    os.kill(pid, 0)
            else:
                time.sleep(0.1)
                os.kill(pid, 0)
            logfn('# Daemon process %d is stuck - really killing it' % pid)
            os.kill(pid, signal.SIGKILL)
        except OSError as err:
            if err.errno != errno.ESRCH:
                raise

def killdaemons(pidfile, tryhard=True, remove=False, logfn=None):
    if not logfn:
        logfn = lambda s: s
    # Kill off any leftover daemon processes
    try:
        pids = []
        with open(pidfile) as fp:
            for line in fp:
                try:
                    pid = int(line)
                    if pid <= 0:
                        raise ValueError
                except ValueError:
                    logfn('# Not killing daemon process %s - invalid pid'
                          % line.rstrip())
                    continue
                pids.append(pid)
        for pid in pids:
            kill(pid, logfn, tryhard)
        if remove:
            os.unlink(pidfile)
    except IOError:
        pass

if __name__ == '__main__':
    if len(sys.argv) > 1:
        path, = sys.argv[1:]
    else:
        path = os.environ["DAEMON_PIDS"]

    killdaemons(path, remove=True)