comparison pca.m @ 3:069653867b3b

Implement PCA
author Jordi Gutiérrez Hermoso <jordigh@octave.org>
date Tue, 06 Dec 2011 03:22:07 -0500
parents ded78d0b4987
children
comparison
equal deleted inserted replaced
2:be1f915bd52a 3:069653867b3b
1 function [U, S] = pca(X) 1 function [U, S] = pca(X)
2 %PCA Run principal component analysis on the dataset X 2 ##PCA Run principal component analysis on the dataset X
3 % [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X 3 ## [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
4 % Returns the eigenvectors U, the eigenvalues (on diagonal) in S 4 ## Returns the eigenvectors U, the eigenvalues (on diagonal) in S
5 % 5 ##
6 6
7 % Useful values 7 [U, S, ~] = svd (X'*X/rows (X));
8 [m, n] = size(X);
9 8
10 % You need to return the following variables correctly. 9 endfunction
11 U = zeros(n);
12 S = zeros(n);
13
14 % ====================== YOUR CODE HERE ======================
15 % Instructions: You should first compute the covariance matrix. Then, you
16 % should use the "svd" function to compute the eigenvectors
17 % and eigenvalues of the covariance matrix.
18 %
19 % Note: When computing the covariance matrix, remember to divide by m (the
20 % number of examples).
21 %
22
23
24
25
26
27
28
29 % =========================================================================
30
31 end