Mercurial > hg > machine-learning-hw5
view linearRegCostFunction.m @ 1:9a9f76850dc6
Implement linearRegCostFunction
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Sun, 20 Nov 2011 23:42:47 -0500 |
parents | 0f14514e907f |
children |
line wrap: on
line source
function [J, grad] = linearRegCostFunction(X, y, theta, lambda) ##LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear ##regression with multiple variables ## [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the ## cost of using theta as the parameter for linear regression to fit the ## data points in X and y. Returns the cost in J and the gradient in grad m = length (y); ht = X*theta; J = (sumsq (ht - y) + lambda*sumsq (theta(2:end)))/(2*m); grad = (X'*(ht - y) + [0; lambda*theta(2:end)])/m; endfunction