Mercurial > hg > machine-learning-hw2
view costFunctionReg.m @ 4:4fb05328d3cf
Implement costFunctionReg
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Sat, 29 Oct 2011 22:29:53 -0500 |
parents | 5664e0047b3e |
children | 141d81a2acf5 |
line wrap: on
line source
function [J, grad] = costFunctionReg(theta, X, y, lambda) ##COSTFUNCTIONREG Compute cost and gradient for logistic regression ##with regularization ## J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using ## theta as the parameter for regularized logistic regression and the ## gradient of the cost w.r.t. to the parameters. ## Initialize some useful values m = length(y); ## number of training examples ## h_theta(x) ht = sigmoid (X*theta); J = -sum (y.*log (ht) + (1 - y).*log (1 - ht))/m \ + lambda*sum (theta(2:end).^2)/(2*m); grad = (X'*(ht - y) + [0; lambda*theta(2:end)])/m ; endfunction