view src/netbase.cpp @ 2477:f8e75c9db98a draft

Preliminary support for Tor/I2P hidden services There are plans to let Bitcoin function as Tor/I2P hidden service. To do so, we could use the established encoding provided by OnionCat and GarliCat (without actually using those tools) to embed Tor/I2P addresses in IPv6. This patch makes these addresses considered routable, so they can travel over the Bitcoin network in 'addr' messages. This will hopefully make it easier to deploy real hidden service support later.
author Pieter Wuille <pieter.wuille@gmail.com>
date Mon, 02 Apr 2012 17:06:11 +0200
parents a9b012461972
children 3513aef58df1
line wrap: on
line source

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.

#include "netbase.h"
#include "util.h"

#ifndef WIN32
#include <sys/fcntl.h>
#endif

#include "strlcpy.h"

using namespace std;

// Settings
int nSocksVersion = 5;
int fUseProxy = false;
bool fProxyNameLookup = false;
bool fNameLookup = false;
CService addrProxy("127.0.0.1",9050);
int nConnectTimeout = 5000;


static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };

bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
    vIP.clear();
    struct addrinfo aiHint;
    memset(&aiHint, 0, sizeof(struct addrinfo));

    aiHint.ai_socktype = SOCK_STREAM;
    aiHint.ai_protocol = IPPROTO_TCP;
#ifdef WIN32
#  ifdef USE_IPV6
    aiHint.ai_family = AF_UNSPEC;
    aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#  else
    aiHint.ai_family = AF_INET;
    aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#  endif
#else
#  ifdef USE_IPV6
    aiHint.ai_family = AF_UNSPEC;
    aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
#  else
    aiHint.ai_family = AF_INET;
    aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
#  endif
#endif
    struct addrinfo *aiRes = NULL;
    int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
    if (nErr)
        return false;

    struct addrinfo *aiTrav = aiRes;
    while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
    {
        if (aiTrav->ai_family == AF_INET)
        {
            assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
            vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
        }

#ifdef USE_IPV6
        if (aiTrav->ai_family == AF_INET6)
        {
            assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
            vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
        }
#endif

        aiTrav = aiTrav->ai_next;
    }

    freeaddrinfo(aiRes);

    return (vIP.size() > 0);
}

bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
    if (pszName[0] == 0)
        return false;
    char psz[256];
    char *pszHost = psz;
    strlcpy(psz, pszName, sizeof(psz));
    if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
    {
        pszHost = psz+1;
        psz[strlen(psz)-1] = 0;
    }

    return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
}

bool LookupHostNumeric(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions)
{
    return LookupHost(pszName, vIP, nMaxSolutions, false);
}

bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
    if (pszName[0] == 0)
        return false;
    int port = portDefault;
    char psz[256];
    char *pszHost = psz;
    strlcpy(psz, pszName, sizeof(psz));
    char* pszColon = strrchr(psz+1,':');
    char *pszPortEnd = NULL;
    int portParsed = pszColon ? strtoul(pszColon+1, &pszPortEnd, 10) : 0;
    if (pszColon && pszPortEnd && pszPortEnd[0] == 0)
    {
        if (psz[0] == '[' && pszColon[-1] == ']')
        {
            pszHost = psz+1;
            pszColon[-1] = 0;
        }
        else
            pszColon[0] = 0;
        if (port >= 0 && port <= USHRT_MAX)
            port = portParsed;
    }
    else
    {
        if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
        {
            pszHost = psz+1;
            psz[strlen(psz)-1] = 0;
        }

    }

    std::vector<CNetAddr> vIP;
    bool fRet = LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
    if (!fRet)
        return false;
    vAddr.resize(vIP.size());
    for (unsigned int i = 0; i < vIP.size(); i++)
        vAddr[i] = CService(vIP[i], port);
    return true;
}

bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
    std::vector<CService> vService;
    bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
    if (!fRet)
        return false;
    addr = vService[0];
    return true;
}

bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
    return Lookup(pszName, addr, portDefault, false);
}

bool static Socks4(const CService &addrDest, SOCKET& hSocket)
{
    printf("SOCKS4 connecting %s\n", addrDest.ToString().c_str());
    if (!addrDest.IsIPv4())
    {
        closesocket(hSocket);
        return error("Proxy destination is not IPv4");
    }
    char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user";
    struct sockaddr_in addr;
    addrDest.GetSockAddr(&addr);
    memcpy(pszSocks4IP + 2, &addr.sin_port, 2);
    memcpy(pszSocks4IP + 4, &addr.sin_addr, 4);
    char* pszSocks4 = pszSocks4IP;
    int nSize = sizeof(pszSocks4IP);

    int ret = send(hSocket, pszSocks4, nSize, MSG_NOSIGNAL);
    if (ret != nSize)
    {
        closesocket(hSocket);
        return error("Error sending to proxy");
    }
    char pchRet[8];
    if (recv(hSocket, pchRet, 8, 0) != 8)
    {
        closesocket(hSocket);
        return error("Error reading proxy response");
    }
    if (pchRet[1] != 0x5a)
    {
        closesocket(hSocket);
        if (pchRet[1] != 0x5b)
            printf("ERROR: Proxy returned error %d\n", pchRet[1]);
        return false;
    }
    printf("SOCKS4 connected %s\n", addrDest.ToString().c_str());
    return true;
}

bool static Socks5(string strDest, int port, SOCKET& hSocket)
{
    printf("SOCKS5 connecting %s\n", strDest.c_str());
    if (strDest.size() > 255)
    {
        closesocket(hSocket);
        return error("Hostname too long");
    }
    char pszSocks5Init[] = "\5\1\0";
    char *pszSocks5 = pszSocks5Init;
    ssize_t nSize = sizeof(pszSocks5Init);

    ssize_t ret = send(hSocket, pszSocks5, nSize, MSG_NOSIGNAL);
    if (ret != nSize)
    {
        closesocket(hSocket);
        return error("Error sending to proxy");
    }
    char pchRet1[2];
    if (recv(hSocket, pchRet1, 2, 0) != 2)
    {
        closesocket(hSocket);
        return error("Error reading proxy response");
    }
    if (pchRet1[0] != 0x05 || pchRet1[1] != 0x00)
    {
        closesocket(hSocket);
        return error("Proxy failed to initialize");
    }
    string strSocks5("\5\1");
    strSocks5 += '\000'; strSocks5 += '\003';
    strSocks5 += static_cast<char>(std::min((int)strDest.size(), 255));
    strSocks5 += strDest; 
    strSocks5 += static_cast<char>((port >> 8) & 0xFF);
    strSocks5 += static_cast<char>((port >> 0) & 0xFF);
    ret = send(hSocket, strSocks5.c_str(), strSocks5.size(), MSG_NOSIGNAL);
    if (ret != (ssize_t)strSocks5.size())
    {
        closesocket(hSocket);
        return error("Error sending to proxy");
    }
    char pchRet2[4];
    if (recv(hSocket, pchRet2, 4, 0) != 4)
    {
        closesocket(hSocket);
        return error("Error reading proxy response");
    }
    if (pchRet2[0] != 0x05)
    {
        closesocket(hSocket);
        return error("Proxy failed to accept request");
    }
    if (pchRet2[1] != 0x00)
    {
        closesocket(hSocket);
        switch (pchRet2[1])
        {
            case 0x01: return error("Proxy error: general failure");
            case 0x02: return error("Proxy error: connection not allowed");
            case 0x03: return error("Proxy error: network unreachable");
            case 0x04: return error("Proxy error: host unreachable");
            case 0x05: return error("Proxy error: connection refused");
            case 0x06: return error("Proxy error: TTL expired");
            case 0x07: return error("Proxy error: protocol error");
            case 0x08: return error("Proxy error: address type not supported");
            default:   return error("Proxy error: unknown");
        }
    }
    if (pchRet2[2] != 0x00)
    {
        closesocket(hSocket);
        return error("Error: malformed proxy response");
    }
    char pchRet3[256];
    switch (pchRet2[3])
    {
        case 0x01: ret = recv(hSocket, pchRet3, 4, 0) != 4; break;
        case 0x04: ret = recv(hSocket, pchRet3, 16, 0) != 16; break;
        case 0x03:
        {
            ret = recv(hSocket, pchRet3, 1, 0) != 1;
            if (ret)
                return error("Error reading from proxy");
            int nRecv = pchRet3[0];
            ret = recv(hSocket, pchRet3, nRecv, 0) != nRecv;
            break;
        }
        default: closesocket(hSocket); return error("Error: malformed proxy response");
    }
    if (ret)
    {
        closesocket(hSocket);
        return error("Error reading from proxy");
    }
    if (recv(hSocket, pchRet3, 2, 0) != 2)
    {
        closesocket(hSocket);
        return error("Error reading from proxy");
    }
    printf("SOCKS5 connected %s\n", strDest.c_str());
    return true;
}

bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
    hSocketRet = INVALID_SOCKET;

    struct sockaddr_storage sockaddr;
    int nFamily = 0;
    size_t nSockAddrLen = 0;

    if (addrConnect.IsIPv4())
    {
        // Use IPv4 stack to connect to IPv4 addresses
        struct sockaddr_in sockaddr4;
        if (!addrConnect.GetSockAddr(&sockaddr4))
            return false;
        memcpy(&sockaddr, &sockaddr4, sizeof(sockaddr4));
        nSockAddrLen = sizeof(sockaddr4);
        nFamily = AF_INET;
    }
#ifdef USE_IPV6
    else if (addrConnect.IsIPv6())
    {
        struct sockaddr_in6 sockaddr6;
        if (!addrConnect.GetSockAddr6(&sockaddr6))
            return false;
        memcpy(&sockaddr, &sockaddr6, sizeof(sockaddr6));
        nSockAddrLen = sizeof(sockaddr6);
        nFamily = AF_INET6;
    }
#endif
    else {
        printf("Cannot connect to %s: unsupported network\n", addrConnect.ToString().c_str());
        return false;
    }

    SOCKET hSocket = socket(nFamily, SOCK_STREAM, IPPROTO_TCP);
    if (hSocket == INVALID_SOCKET)
        return false;
#ifdef SO_NOSIGPIPE
    int set = 1;
    setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif

#ifdef WIN32
    u_long fNonblock = 1;
    if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
    int fFlags = fcntl(hSocket, F_GETFL, 0);
    if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1)
#endif
    {
        closesocket(hSocket);
        return false;
    }

    if (connect(hSocket, (struct sockaddr*)&sockaddr, nSockAddrLen) == SOCKET_ERROR)
    {
        // WSAEINVAL is here because some legacy version of winsock uses it
        if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL)
        {
            struct timeval timeout;
            timeout.tv_sec  = nTimeout / 1000;
            timeout.tv_usec = (nTimeout % 1000) * 1000;

            fd_set fdset;
            FD_ZERO(&fdset);
            FD_SET(hSocket, &fdset);
            int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
            if (nRet == 0)
            {
                printf("connection timeout\n");
                closesocket(hSocket);
                return false;
            }
            if (nRet == SOCKET_ERROR)
            {
                printf("select() for connection failed: %i\n",WSAGetLastError());
                closesocket(hSocket);
                return false;
            }
            socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
            if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
            if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
            {
                printf("getsockopt() for connection failed: %i\n",WSAGetLastError());
                closesocket(hSocket);
                return false;
            }
            if (nRet != 0)
            {
                printf("connect() failed after select(): %s\n",strerror(nRet));
                closesocket(hSocket);
                return false;
            }
        }
#ifdef WIN32
        else if (WSAGetLastError() != WSAEISCONN)
#else
        else
#endif
        {
            printf("connect() failed: %i\n",WSAGetLastError());
            closesocket(hSocket);
            return false;
        }
    }

    // this isn't even strictly necessary
    // CNode::ConnectNode immediately turns the socket back to non-blocking
    // but we'll turn it back to blocking just in case
#ifdef WIN32
    fNonblock = 0;
    if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
    fFlags = fcntl(hSocket, F_GETFL, 0);
    if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR)
#endif
    {
        closesocket(hSocket);
        return false;
    }

    hSocketRet = hSocket;
    return true;
}

bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout)
{
    SOCKET hSocket = INVALID_SOCKET;
    bool fProxy = (fUseProxy && addrDest.IsRoutable());

    if (!ConnectSocketDirectly(fProxy ? addrProxy : addrDest, hSocket, nTimeout))
        return false;

    if (fProxy)
    {
        switch(nSocksVersion)
        {
            case 4:
                if (!Socks4(addrDest, hSocket))
                    return false;
                break;

            case 5:
            default:
                if (!Socks5(addrDest.ToStringIP(), addrDest.GetPort(), hSocket))
                    return false;
                break;
        } 
    }

    hSocketRet = hSocket;
    return true;
}

bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout)
{
    string strDest(pszDest);
    int port = portDefault;

    size_t colon = strDest.find_last_of(':');
    char *endp = NULL;
    int n = strtol(pszDest + colon + 1, &endp, 10);
    if (endp && *endp == 0 && n >= 0) {
        strDest = strDest.substr(0, colon);
        if (n > 0 && n < 0x10000)
            port = n;
    }
    if (strDest[0] == '[' && strDest[strDest.size()-1] == ']')
        strDest = strDest.substr(1, strDest.size()-2);

    SOCKET hSocket = INVALID_SOCKET;
    CService addrResolved(CNetAddr(strDest, fNameLookup && !fProxyNameLookup), port);
    if (addrResolved.IsValid()) {
        addr = addrResolved;
        return ConnectSocket(addr, hSocketRet, nTimeout);
    }
    addr = CService("0.0.0.0:0");
    if (!fNameLookup)
        return false;
    if (!ConnectSocketDirectly(addrProxy, hSocket, nTimeout))
        return false;

    switch(nSocksVersion)
        {
            case 4: return false;
            case 5:
            default:
                if (!Socks5(strDest, port, hSocket))
                    return false;
                break;
        }

    hSocketRet = hSocket;
    return true;
}

void CNetAddr::Init()
{
    memset(ip, 0, 16);
}

void CNetAddr::SetIP(const CNetAddr& ipIn)
{
    memcpy(ip, ipIn.ip, sizeof(ip));
}

CNetAddr::CNetAddr()
{
    Init();
}

CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
    memcpy(ip,    pchIPv4, 12);
    memcpy(ip+12, &ipv4Addr, 4);
}

#ifdef USE_IPV6
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
    memcpy(ip, &ipv6Addr, 16);
}
#endif

CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
    Init();
    std::vector<CNetAddr> vIP;
    if (LookupHost(pszIp, vIP, 1, fAllowLookup))
        *this = vIP[0];
}

CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
    Init();
    std::vector<CNetAddr> vIP;
    if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
        *this = vIP[0];
}

int CNetAddr::GetByte(int n) const
{
    return ip[15-n];
}

bool CNetAddr::IsIPv4() const
{
    return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}

bool CNetAddr::IsIPv6() const
{
    return (!IsIPv4());
}

bool CNetAddr::IsRFC1918() const
{
    return IsIPv4() && (
        GetByte(3) == 10 || 
        (GetByte(3) == 192 && GetByte(2) == 168) || 
        (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}

bool CNetAddr::IsRFC3927() const
{
    return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}

bool CNetAddr::IsRFC3849() const
{
    return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}

bool CNetAddr::IsRFC3964() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}

bool CNetAddr::IsRFC6052() const
{
    static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
    return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}

bool CNetAddr::IsRFC4380() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}

bool CNetAddr::IsRFC4862() const
{
    static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
    return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}

bool CNetAddr::IsRFC4193() const
{
    return ((GetByte(15) & 0xFE) == 0xFC);
}

bool CNetAddr::IsRFC6145() const
{
    static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
    return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}

bool CNetAddr::IsRFC4843() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}

bool CNetAddr::IsOnionCat() const
{
    static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43};
    return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0);
}

bool CNetAddr::IsGarliCat() const
{
    static const unsigned char pchGarliCat[] = {0xFD,0x60,0xDB,0x4D,0xDD,0xB5};
    return (memcmp(ip, pchGarliCat, sizeof(pchGarliCat)) == 0);
}

bool CNetAddr::IsLocal() const
{
    // IPv4 loopback
   if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
       return true;

   // IPv6 loopback (::1/128)
   static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
   if (memcmp(ip, pchLocal, 16) == 0)
       return true;

   return false;
}

bool CNetAddr::IsMulticast() const
{
    return    (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
           || (GetByte(15) == 0xFF);
}

bool CNetAddr::IsValid() const
{
    // Clean up 3-byte shifted addresses caused by garbage in size field
    // of addr messages from versions before 0.2.9 checksum.
    // Two consecutive addr messages look like this:
    // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
    // so if the first length field is garbled, it reads the second batch
    // of addr misaligned by 3 bytes.
    if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
        return false;

    // unspecified IPv6 address (::/128)
    unsigned char ipNone[16] = {};
    if (memcmp(ip, ipNone, 16) == 0)
        return false;

    // documentation IPv6 address
    if (IsRFC3849())
        return false;

    if (IsIPv4())
    {
        // INADDR_NONE
        uint32_t ipNone = INADDR_NONE;
        if (memcmp(ip+12, &ipNone, 4) == 0)
            return false;

        // 0
        ipNone = 0;
        if (memcmp(ip+12, &ipNone, 4) == 0)
            return false;
    }

    return true;
}

bool CNetAddr::IsRoutable() const
{
    return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || (IsRFC4193() && !IsOnionCat() && !IsGarliCat()) || IsRFC4843() || IsLocal());
}

std::string CNetAddr::ToStringIP() const
{
    if (IsIPv4())
        return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
    else
        return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
                         GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
                         GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
                         GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
                         GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}

std::string CNetAddr::ToString() const
{
    return ToStringIP();
}

bool operator==(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) == 0);
}

bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) != 0);
}

bool operator<(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) < 0);
}

bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
    if (!IsIPv4())
        return false;
    memcpy(pipv4Addr, ip+12, 4);
    return true;
}

#ifdef USE_IPV6
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
    memcpy(pipv6Addr, ip, 16);
    return true;
}
#endif

// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
    std::vector<unsigned char> vchRet;
    int nClass = 0; // 0=IPv6, 1=IPv4, 254=local, 255=unroutable
    int nStartByte = 0;
    int nBits = 16;

    // all local addresses belong to the same group
    if (IsLocal())
    {
        nClass = 254;
        nBits = 0;
    }

    // all unroutable addresses belong to the same group
    if (!IsRoutable())
    {
        nClass = 255;
        nBits = 0;
    }
    // for IPv4 addresses, '1' + the 16 higher-order bits of the IP
    // includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
    else if (IsIPv4() || IsRFC6145() || IsRFC6052())
    {
        nClass = 1;
        nStartByte = 12;
    }
    // for 6to4 tunneled addresses, use the encapsulated IPv4 address
    else if (IsRFC3964())
    {
        nClass = 1;
        nStartByte = 2;
    }
    // for Teredo-tunneled IPv6 addresses, use the encapsulated IPv4 address
    else if (IsRFC4380())
    {
        vchRet.push_back(1);
        vchRet.push_back(GetByte(3) ^ 0xFF);
        vchRet.push_back(GetByte(2) ^ 0xFF);
        return vchRet;
    }
    // for he.net, use /36 groups
    else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
        nBits = 36;
    // for the rest of the IPv6 network, use /32 groups
    else
        nBits = 32;

    vchRet.push_back(nClass);
    while (nBits >= 8)
    {
        vchRet.push_back(GetByte(15 - nStartByte));
        nStartByte++;
        nBits -= 8;
    }
    if (nBits > 0)
        vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1));

    return vchRet;
}

int64 CNetAddr::GetHash() const
{
    uint256 hash = Hash(&ip[0], &ip[16]);
    int64 nRet;
    memcpy(&nRet, &hash, sizeof(nRet));
    return nRet;
}

void CNetAddr::print() const
{
    printf("CNetAddr(%s)\n", ToString().c_str());
}

// for IPv6 partners:        for unknown/Teredo partners:      for IPv4 partners:
// 0 - unroutable            // 0 - unroutable                 // 0 - unroutable
// 1 - teredo                // 1 - teredo                     // 1 - ipv4
// 2 - tunneled ipv6         // 2 - tunneled ipv6
// 3 - ipv4                  // 3 - ipv6
// 4 - ipv6                  // 4 - ipv4
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
    if (!IsValid() || !IsRoutable())
        return 0;
    if (paddrPartner && paddrPartner->IsIPv4())
        return IsIPv4() ? 1 : 0;
    if (IsRFC4380())
        return 1;
    if (IsRFC3964() || IsRFC6052())
        return 2;
    bool fRealIPv6 = paddrPartner && !paddrPartner->IsRFC4380() && paddrPartner->IsValid() && paddrPartner->IsRoutable();
    if (fRealIPv6)
        return IsIPv4() ? 3 : 4;
    else
        return IsIPv4() ? 4 : 3;
}

void CService::Init()
{
    port = 0;
}

CService::CService()
{
    Init();
}

CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}

CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}

#ifdef USE_IPV6
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
#endif

CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
    assert(addr.sin_family == AF_INET);
}

#ifdef USE_IPV6
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
   assert(addr.sin6_family == AF_INET6);
}
#endif

CService::CService(const char *pszIpPort, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(pszIpPort, ip, 0, fAllowLookup))
        *this = ip;
}

CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
        *this = ip;
}

CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
        *this = ip;
}

CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
        *this = ip;
}

unsigned short CService::GetPort() const
{
    return port;
}

bool operator==(const CService& a, const CService& b)
{
    return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}

bool operator!=(const CService& a, const CService& b)
{
    return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}

bool operator<(const CService& a, const CService& b)
{
    return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}

bool CService::GetSockAddr(struct sockaddr_in* paddr) const
{
    if (!IsIPv4())
        return false;
    memset(paddr, 0, sizeof(struct sockaddr_in));
    if (!GetInAddr(&paddr->sin_addr))
        return false;
    paddr->sin_family = AF_INET;
    paddr->sin_port = htons(port);
    return true;
}

#ifdef USE_IPV6
bool CService::GetSockAddr6(struct sockaddr_in6* paddr) const
{
    memset(paddr, 0, sizeof(struct sockaddr_in6));
    if (!GetIn6Addr(&paddr->sin6_addr))
        return false;
    paddr->sin6_family = AF_INET6;
    paddr->sin6_port = htons(port);
    return true;
}
#endif

std::vector<unsigned char> CService::GetKey() const
{
     std::vector<unsigned char> vKey;
     vKey.resize(18);
     memcpy(&vKey[0], ip, 16);
     vKey[16] = port / 0x100;
     vKey[17] = port & 0x0FF;
     return vKey;
}

std::string CService::ToStringPort() const
{
    return strprintf("%i", port);
}

std::string CService::ToStringIPPort() const
{
    if (IsIPv4()) {
        return ToStringIP() + ":" + ToStringPort();
    } else {
        return "[" + ToStringIP() + "]:" + ToStringPort();
    }
}

std::string CService::ToString() const
{
    return ToStringIPPort();
}

void CService::print() const
{
    printf("CService(%s)\n", ToString().c_str());
}

void CService::SetPort(unsigned short portIn)
{
    port = portIn;
}